Numeric
is the class from which all higher-level numeric classes should inherit.
Numeric
allows instantiation of heap-allocated objects. Other core numeric classes such as Integer
are implemented as immediates, which means that each Integer
is a single immutable object which is always passed by value.
a = 1 1.object_id == a.object_id #=> true
There can only ever be one instance of the integer 1
, for example. Ruby ensures this by preventing instantiation. If duplication is attempted, the same instance is returned.
Integer.new(1) #=> NoMethodError: undefined method `new' for Integer:Class 1.dup #=> 1 1.object_id == 1.dup.object_id #=> true
For this reason, Numeric
should be used when defining other numeric classes.
Classes which inherit from Numeric
must implement coerce
, which returns a two-member Array
containing an object that has been coerced into an instance of the new class and self
(see coerce
).
Inheriting classes should also implement arithmetic operator methods (+
, -
, *
and /
) and the <=>
operator (see Comparable
). These methods may rely on coerce
to ensure interoperability with instances of other numeric classes.
class Tally < Numeric def initialize(string) @string = string end def to_s @string end def to_i @string.size end def coerce(other) [self.class.new('|' * other.to_i), self] end def <=>(other) to_i <=> other.to_i end def +(other) self.class.new('|' * (to_i + other.to_i)) end def -(other) self.class.new('|' * (to_i - other.to_i)) end def *(other) self.class.new('|' * (to_i * other.to_i)) end def /(other) self.class.new('|' * (to_i / other.to_i)) end end tally = Tally.new('||') puts tally * 2 #=> "||||" puts tally > 1 #=> true
What’s Here
First, what’s elsewhere. Class Numeric:
-
Inherits from class Object.
-
Includes module Comparable.
Here, class Numeric provides methods for:
Querying
-
finite?
: Returns true unlessself
is infinite or not a number. -
infinite?
: Returns -1,nil
or +1, depending on whetherself
is-Infinity<tt>, finite, or <tt>+Infinity
. -
integer?
: Returns whetherself
is an integer. -
negative?
: Returns whetherself
is negative. -
nonzero?
: Returns whetherself
is not zero. -
positive?
: Returns whetherself
is positive. -
real?
: Returns whetherself
is a real value. -
zero?
: Returns whetherself
is zero.
Comparing
-
<=>
: Returns:-
-1 if
self
is less than the given value. -
0 if
self
is equal to the given value. -
1 if
self
is greater than the given value. -
nil
ifself
and the given value are not comparable.
-
-
eql?
: Returns whetherself
and the given value have the same value and type.
Converting
-
%
(aliased asmodulo
): Returns the remainder ofself
divided by the given value. -
-@
: Returns the value ofself
, negated. -
abs
(aliased asmagnitude
): Returns the absolute value ofself
. -
abs2
: Returns the square ofself
. -
angle
(aliased asarg
andphase
): Returns 0 ifself
is positive, Math::PI otherwise. -
ceil
: Returns the smallest number greater than or equal toself
, to a given precision. -
coerce
: Returns array[coerced_self, coerced_other]
for the given other value. -
conj
(aliased asconjugate
): Returns the complex conjugate ofself
. -
denominator
: Returns the denominator (always positive) of theRational
representation ofself
. -
div
: Returns the value ofself
divided by the given value and converted to an integer. -
divmod
: Returns array[quotient, modulus]
resulting from dividingself
the given divisor. -
fdiv
: Returns theFloat
result of dividingself
by the given divisor. -
floor
: Returns the largest number less than or equal toself
, to a given precision. -
i
: Returns theComplex
objectComplex(0, self)
. the given value. -
imaginary
(aliased asimag
): Returns the imaginary part of theself
. -
numerator
: Returns the numerator of theRational
representation ofself
; has the same sign asself
. -
polar
: Returns the array[self.abs, self.arg]
. -
quo
: Returns the value ofself
divided by the given value. -
real
: Returns the real part ofself
. -
rect
(aliased asrectangular
): Returns the array[self, 0]
. -
remainder
: Returnsself-arg*(self/arg).truncate
for the givenarg
. -
round
: Returns the value ofself
rounded to the nearest value for the given a precision. -
to_int
: Returns theInteger
representation ofself
, truncating if necessary. -
truncate
: Returnsself
truncated (toward zero) to a given precision.
Other
static VALUE
num_modulo(VALUE x, VALUE y)
{
VALUE q = num_funcall1(x, id_div, y);
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1, q));
}
Returns self
modulo other
as a real number.
Of the Core and Standard Library classes, only Rational
uses this implementation.
For Rational r
and real number n
, these expressions are equivalent:
r % n r-n*(r/n).floor r.divmod(n)[1]
See Numeric#divmod
.
Examples:
r = Rational(1, 2) # => (1/2) r2 = Rational(2, 3) # => (2/3) r % r2 # => (1/2) r % 2 # => (1/2) r % 2.0 # => 0.5 r = Rational(301,100) # => (301/100) r2 = Rational(7,5) # => (7/5) r % r2 # => (21/100) r % -r2 # => (-119/100) (-r) % r2 # => (119/100) (-r) %-r2 # => (-21/100)
Numeric#modulo
is an alias for Numeric#%
.
static VALUE
num_uplus(VALUE num)
{
return num;
}
Returns self
.
static VALUE
num_uminus(VALUE num)
{
VALUE zero;
zero = INT2FIX(0);
do_coerce(&zero, &num, TRUE);
return num_funcall1(zero, '-', num);
}
Unary Minus—Returns the receiver, negated.
static VALUE
num_cmp(VALUE x, VALUE y)
{
if (x == y) return INT2FIX(0);
return Qnil;
}
Returns zero if self
is the same as other
, nil
otherwise.
No subclass in the Ruby Core or Standard Library uses this implementation.
static VALUE
num_abs(VALUE num)
{
if (rb_num_negative_int_p(num)) {
return num_funcall0(num, idUMinus);
}
return num;
}
Returns the absolute value of self
.
12.abs #=> 12 (-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
Numeric#magnitude
is an alias for Numeric#abs
.
static VALUE
numeric_abs2(VALUE self)
{
return f_mul(self, self);
}
Returns square of self.
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return DBL2NUM(M_PI);
}
Returns 0 if the value is positive, pi otherwise.
static VALUE
num_ceil(int argc, VALUE *argv, VALUE num)
{
return flo_ceil(argc, argv, rb_Float(num));
}
Returns the smallest number that is greater than or equal to self
with a precision of digits
decimal digits.
Numeric implements this by converting self
to a Float
and invoking Float#ceil
.
static VALUE
num_clone(int argc, VALUE *argv, VALUE x)
{
return rb_immutable_obj_clone(argc, argv, x);
}
Returns self
.
Raises an exception if the value for freeze
is neither true
nor nil
.
Related: Numeric#dup
.
static VALUE
num_coerce(VALUE x, VALUE y)
{
if (CLASS_OF(x) == CLASS_OF(y))
return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
Returns a 2-element array containing two numeric elements, formed from the two operands self
and other
, of a common compatible type.
Of the Core and Standard Library classes, Integer
, Rational
, and Complex
use this implementation.
Examples:
i = 2 # => 2 i.coerce(3) # => [3, 2] i.coerce(3.0) # => [3.0, 2.0] i.coerce(Rational(1, 2)) # => [0.5, 2.0] i.coerce(Complex(3, 4)) # Raises RangeError. r = Rational(5, 2) # => (5/2) r.coerce(2) # => [(2/1), (5/2)] r.coerce(2.0) # => [2.0, 2.5] r.coerce(Rational(2, 3)) # => [(2/3), (5/2)] r.coerce(Complex(3, 4)) # => [(3+4i), ((5/2)+0i)] c = Complex(2, 3) # => (2+3i) c.coerce(2) # => [(2+0i), (2+3i)] c.coerce(2.0) # => [(2.0+0i), (2+3i)] c.coerce(Rational(1, 2)) # => [((1/2)+0i), (2+3i)] c.coerce(Complex(3, 4)) # => [(3+4i), (2+3i)]
Raises an exception if any type conversion fails.
# File tmp/rubies/ruby-3.2.0/numeric.rb, line 76
def conjugate
self
end
Returns self.
static VALUE
numeric_denominator(VALUE self)
{
return f_denominator(f_to_r(self));
}
Returns the denominator (always positive).
static VALUE
num_div(VALUE x, VALUE y)
{
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);
}
static VALUE
num_divmod(VALUE x, VALUE y)
{
return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}
Returns a 2-element array [q, r]
, where
q = (self/other).floor # Quotient r = self % other # Remainder
Of the Core and Standard Library classes, only Rational
uses this implementation.
Examples:
Rational(11, 1).divmod(4) # => [2, (3/1)] Rational(11, 1).divmod(-4) # => [-3, (-1/1)] Rational(-11, 1).divmod(4) # => [-3, (1/1)] Rational(-11, 1).divmod(-4) # => [2, (-3/1)] Rational(12, 1).divmod(4) # => [3, (0/1)] Rational(12, 1).divmod(-4) # => [-3, (0/1)] Rational(-12, 1).divmod(4) # => [-3, (0/1)] Rational(-12, 1).divmod(-4) # => [3, (0/1)] Rational(13, 1).divmod(4.0) # => [3, 1.0] Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]
static VALUE
num_dup(VALUE x)
{
return x;
}
Returns self
.
Related: Numeric#clone
.
static VALUE
num_eql(VALUE x, VALUE y)
{
if (TYPE(x) != TYPE(y)) return Qfalse;
if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_eql(x, y);
}
return rb_equal(x, y);
}
Returns true
if self
and other
are the same type and have equal values.
Of the Core and Standard Library classes, only Integer
, Rational
, and Complex
use this implementation.
Examples:
1.eql?(1) # => true 1.eql?(1.0) # => false 1.eql?(Rational(1, 1)) # => false 1.eql?(Complex(1, 0)) # => false
Method eql?
is different from +==+ in that eql?
requires matching types, while +==+ does not.
static VALUE
num_fdiv(VALUE x, VALUE y)
{
return rb_funcall(rb_Float(x), '/', 1, y);
}
Returns the quotient self/other
as a float, using method /
in the derived class of self
. (Numeric itself does not define method /
.)
Of the Core and Standard Library classes, only BigDecimal
uses this implementation.
# File tmp/rubies/ruby-3.2.0/numeric.rb, line 41
def finite?
true
end
Returns true
if num
is a finite number, otherwise returns false
.
static VALUE
num_floor(int argc, VALUE *argv, VALUE num)
{
return flo_floor(argc, argv, rb_Float(num));
}
Returns the largest number that is less than or equal to self
with a precision of digits
decimal digits.
Numeric implements this by converting self
to a Float
and invoking Float#floor
.
static VALUE
num_imaginary(VALUE num)
{
return rb_complex_new(INT2FIX(0), num);
}
Returns Complex(0, self)
:
2.i # => (0+2i) -2.i # => (0-2i) 2.0.i # => (0+2.0i) Rational(1, 2).i # => (0+(1/2)*i) Complex(3, 4).i # Raises NoMethodError.
# File tmp/rubies/ruby-3.2.0/numeric.rb, line 63
def imaginary
0
end
Returns zero.
# File tmp/rubies/ruby-3.2.0/numeric.rb, line 52
def infinite?
nil
end
Returns nil
, -1, or 1 depending on whether the value is finite, -Infinity
, or +Infinity
.
# File tmp/rubies/ruby-3.2.0/numeric.rb, line 31
def integer?
false
end
Returns true
if num
is an Integer
.
1.0.integer? #=> false 1.integer? #=> true
static VALUE
num_negative_p(VALUE num)
{
return RBOOL(rb_num_negative_int_p(num));
}
Returns true
if self
is less than 0, false
otherwise.
static VALUE
num_nonzero_p(VALUE num)
{
if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
return Qnil;
}
return num;
}
Returns self
if self
is not a zero value, nil
otherwise; uses method zero?
for the evaluation.
The returned self
allows the method to be chained:
a = %w[z Bb bB bb BB a aA Aa AA A] a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b } # => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
Of the Core and Standard Library classes, Integer
, Float
, Rational
, and Complex
use this implementation.
static VALUE
numeric_numerator(VALUE self)
{
return f_numerator(f_to_r(self));
}
Returns the numerator.
static VALUE
numeric_polar(VALUE self)
{
VALUE abs, arg;
if (RB_INTEGER_TYPE_P(self)) {
abs = rb_int_abs(self);
arg = numeric_arg(self);
}
else if (RB_FLOAT_TYPE_P(self)) {
abs = rb_float_abs(self);
arg = float_arg(self);
}
else if (RB_TYPE_P(self, T_RATIONAL)) {
abs = rb_rational_abs(self);
arg = numeric_arg(self);
}
else {
abs = f_abs(self);
arg = f_arg(self);
}
return rb_assoc_new(abs, arg);
}
Returns an array; [num.abs, num.arg].
static VALUE
num_positive_p(VALUE num)
{
const ID mid = '>';
if (FIXNUM_P(num)) {
if (method_basic_p(rb_cInteger))
return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0));
}
else if (RB_BIGNUM_TYPE_P(num)) {
if (method_basic_p(rb_cInteger))
return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num));
}
return rb_num_compare_with_zero(num, mid);
}
Returns true
if self
is greater than 0, false
otherwise.
VALUE
rb_numeric_quo(VALUE x, VALUE y)
{
if (RB_TYPE_P(x, T_COMPLEX)) {
return rb_complex_div(x, y);
}
if (RB_FLOAT_TYPE_P(y)) {
return rb_funcallv(x, idFdiv, 1, &y);
}
x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
return rb_rational_div(x, y);
}
Returns the most exact division (rational for integers, float for floats).
# File tmp/rubies/ruby-3.2.0/numeric.rb, line 18
def real
self
end
Returns self.
# File tmp/rubies/ruby-3.2.0/numeric.rb, line 8
def real?
true
end
Returns true
if num
is a real number (i.e. not Complex
).
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
Returns an array; [num, 0].
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = num_funcall1(x, '%', y);
if ((!rb_equal(z, INT2FIX(0))) &&
((rb_num_negative_int_p(x) &&
rb_num_positive_int_p(y)) ||
(rb_num_positive_int_p(x) &&
rb_num_negative_int_p(y)))) {
if (RB_FLOAT_TYPE_P(y)) {
if (isinf(RFLOAT_VALUE(y))) {
return x;
}
}
return rb_funcall(z, '-', 1, y);
}
return z;
}
Returns the remainder after dividing self
by other
.
Of the Core and Standard Library classes, only Float
and Rational
use this implementation.
Examples:
11.0.remainder(4) # => 3.0 11.0.remainder(-4) # => 3.0 -11.0.remainder(4) # => -3.0 -11.0.remainder(-4) # => -3.0 12.0.remainder(4) # => 0.0 12.0.remainder(-4) # => 0.0 -12.0.remainder(4) # => -0.0 -12.0.remainder(-4) # => -0.0 13.0.remainder(4.0) # => 1.0 13.0.remainder(Rational(4, 1)) # => 1.0 Rational(13, 1).remainder(4) # => (1/1) Rational(13, 1).remainder(-4) # => (1/1) Rational(-13, 1).remainder(4) # => (-1/1) Rational(-13, 1).remainder(-4) # => (-1/1)
static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
return flo_round(argc, argv, rb_Float(num));
}
Returns self
rounded to the nearest value with a precision of digits
decimal digits.
Numeric implements this by converting self
to a Float
and invoking Float#round
.
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
VALUE to, step;
int desc, inf;
if (!rb_block_given_p()) {
VALUE by = Qundef;
num_step_extract_args(argc, argv, &to, &step, &by);
if (!UNDEF_P(by)) {
step = by;
}
if (NIL_P(step)) {
step = INT2FIX(1);
}
else if (rb_equal(step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
rb_obj_is_kind_of(step, rb_cNumeric)) {
return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
num_step_size, from, to, step, FALSE);
}
return SIZED_ENUMERATOR(from, 2, ((VALUE [2]){to, step}), num_step_size);
}
desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
if (rb_equal(step, INT2FIX(0))) {
inf = 1;
}
else if (RB_FLOAT_TYPE_P(to)) {
double f = RFLOAT_VALUE(to);
inf = isinf(f) && (signbit(f) ? desc : !desc);
}
else inf = 0;
if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
long i = FIX2LONG(from);
long diff = FIX2LONG(step);
if (inf) {
for (;; i += diff)
rb_yield(LONG2FIX(i));
}
else {
long end = FIX2LONG(to);
if (desc) {
for (; i >= end; i += diff)
rb_yield(LONG2FIX(i));
}
else {
for (; i <= end; i += diff)
rb_yield(LONG2FIX(i));
}
}
}
else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
VALUE i = from;
if (inf) {
for (;; i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
else {
ID cmp = desc ? '<' : '>';
for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
}
return from;
}
Generates a sequence of numbers; with a block given, traverses the sequence. Of the Core and Standard Library classes, Integer, Float, and Rational use this implementation. A quick example: squares = [] 1.step(by: 2, to: 10) {|i| squares.push(i*i) } squares # => [1, 9, 25, 49, 81] The generated sequence: - Begins with +self+. - Continues at intervals of +step+ (which may not be zero). - Ends with the last number that is within or equal to +limit+; that is, less than or equal to +limit+ if +step+ is positive, greater than or equal to +limit+ if +step+ is negative. If +limit+ is not given, the sequence is of infinite length. If a block is given, calls the block with each number in the sequence; returns +self+. If no block is given, returns an Enumerator::ArithmeticSequence. <b>Keyword Arguments</b> With keyword arguments +by+ and +to+, their values (or defaults) determine the step and limit: # Both keywords given. squares = [] 4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4 squares # => [16, 36, 64, 100] cubes = [] 3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3 cubes # => [27.0, 3.375, 0.0, -3.375, -27.0] squares = [] 1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) } squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0] squares = [] Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) } squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0] # Only keyword to given. squares = [] 4.step(to: 10) {|i| squares.push(i*i) } # => 4 squares # => [16, 25, 36, 49, 64, 81, 100] # Only by given. # Only keyword by given squares = [] 4.step(by:2) {|i| squares.push(i*i); break if i > 10 } squares # => [16, 36, 64, 100, 144] # No block given. e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3)) e.class # => Enumerator::ArithmeticSequence <b>Positional Arguments</b> With optional positional arguments +limit+ and +step+, their values (or defaults) determine the step and limit: squares = [] 4.step(10, 2) {|i| squares.push(i*i) } # => 4 squares # => [16, 36, 64, 100] squares = [] 4.step(10) {|i| squares.push(i*i) } squares # => [16, 25, 36, 49, 64, 81, 100] squares = [] 4.step {|i| squares.push(i*i); break if i > 10 } # => nil squares # => [16, 25, 36, 49, 64, 81, 100, 121]
Implementation Notes
If all the arguments are integers, the loop operates using an integer counter. If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed <i>floor(n + n*Float::EPSILON) + 1</i> times, where <i>n = (limit - self)/step</i>.
static VALUE
numeric_to_c(VALUE self)
{
return rb_complex_new1(self);
}
Returns the value as a complex.
static VALUE
num_to_int(VALUE num)
{
return num_funcall0(num, id_to_i);
}
Returns self
as an integer; converts using method to_i
in the derived class.
Of the Core and Standard Library classes, only Rational
and Complex
use this implementation.
Examples:
Rational(1, 2).to_int # => 0 Rational(2, 1).to_int # => 2 Complex(2, 0).to_int # => 2 Complex(2, 1) # Raises RangeError (non-zero imaginary part)
static VALUE
num_truncate(int argc, VALUE *argv, VALUE num)
{
return flo_truncate(argc, argv, rb_Float(num));
}
Returns self
truncated (toward zero) to a precision of digits
decimal digits.
Numeric implements this by converting self
to a Float
and invoking Float#truncate
.
static VALUE
num_zero_p(VALUE num)
{
return rb_equal(num, INT2FIX(0));
}