Class

A Float object represents a sometimes-inexact real number using the native architecture’s double-precision floating point representation.

Floating point has a different arithmetic and is an inexact number. So you should know its esoteric system. See following:

You can create a Float object explicitly with:

  • A floating-point literal.

You can convert certain objects to Floats with:

What’s Here

First, what’s elsewhere. Class Float:

Here, class Float provides methods for:

Querying

  • finite?: Returns whether self is finite.

  • hash: Returns the integer hash code for self.

  • infinite?: Returns whether self is infinite.

  • nan?: Returns whether self is a NaN (not-a-number).

Comparing

  • #<: Returns whether self is less than the given value.

  • #<=: Returns whether self is less than or equal to the given value.

  • #<=>: Returns a number indicating whether self is less than, equal to, or greater than the given value.

  • == (aliased as === and eql?): Returns whether self is equal to the given value.

  • #>: Returns whether self is greater than the given value.

  • #>=: Returns whether self is greater than or equal to the given value.

Converting

  • % (aliased as modulo): Returns self modulo the given value.

  • *: Returns the product of self and the given value.

  • **: Returns the value of self raised to the power of the given value.

  • +: Returns the sum of self and the given value.

  • -: Returns the difference of self and the given value.

  • #/: Returns the quotient of self and the given value.

  • ceil: Returns the smallest number greater than or equal to self.

  • coerce: Returns a 2-element array containing the given value converted to a Float and self

  • divmod: Returns a 2-element array containing the quotient and remainder results of dividing self by the given value.

  • fdiv: Returns the Float result of dividing self by the given value.

  • floor: Returns the greatest number smaller than or equal to self.

  • next_float: Returns the next-larger representable Float.

  • prev_float: Returns the next-smaller representable Float.

  • quo: Returns the quotient from dividing self by the given value.

  • round: Returns self rounded to the nearest value, to a given precision.

  • to_i (aliased as to_int): Returns self truncated to an Integer.

  • to_s (aliased as inspect): Returns a string containing the place-value representation of self in the given radix.

  • truncate: Returns self truncated to a given precision.

Constants

The base of the floating point, or number of unique digits used to represent the number.

Usually defaults to 2 on most systems, which would represent a base-10 decimal.

The number of base digits for the double data type.

Usually defaults to 53.

DIG

The minimum number of significant decimal digits in a double-precision floating point.

Usually defaults to 15.

The smallest possible exponent value in a double-precision floating point.

Usually defaults to -1021.

The largest possible exponent value in a double-precision floating point.

Usually defaults to 1024.

The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to -307.

The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to 308.

MIN

The smallest positive normalized number in a double-precision floating point.

Usually defaults to 2.2250738585072014e-308.

If the platform supports denormalized numbers, there are numbers between zero and Float::MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.

MAX

The largest possible integer in a double-precision floating point number.

Usually defaults to 1.7976931348623157e+308.

The difference between 1 and the smallest double-precision floating point number greater than 1.

Usually defaults to 2.2204460492503131e-16.

An expression representing positive infinity.

NAN

An expression representing a value which is “not a number”.

Instance Methods

Returns self modulo other as a float.

For float f and real number r, these expressions are equivalent:

f % r
f-r*(f/r).floor
f.divmod(r)[1]

See Numeric#divmod.

Examples:

10.0 % 2              # => 0.0
10.0 % 3              # => 1.0
10.0 % 4              # => 2.0

10.0 % -2             # => 0.0
10.0 % -3             # => -2.0
10.0 % -4             # => -2.0

10.0 % 4.0            # => 2.0
10.0 % Rational(4, 1) # => 2.0

Float#modulo is an alias for Float#%.

Returns a new Float which is the product of self and other:

f = 3.14
f * 2              # => 6.28
f * 2.0            # => 6.28
f * Rational(1, 2) # => 1.57
f * Complex(2, 0)  # => (6.28+0.0i)

Raises self to the power of other:

f = 3.14
f ** 2              # => 9.8596
f ** -2             # => 0.1014239928597509
f ** 2.1            # => 11.054834900588839
f ** Rational(2, 1) # => 9.8596
f ** Complex(2, 0)  # => (9.8596+0i)

Returns a new Float which is the sum of self and other:

f = 3.14
f + 1                 # => 4.140000000000001
f + 1.0               # => 4.140000000000001
f + Rational(1, 1)    # => 4.140000000000001
f + Complex(1, 0)     # => (4.140000000000001+0i)

Returns a new Float which is the difference of self and other:

f = 3.14
f - 1                 # => 2.14
f - 1.0               # => 2.14
f - Rational(1, 1)    # => 2.14
f - Complex(1, 0)     # => (2.14+0i)

Returns float, negated.

Returns a new Float which is the result of dividing self by other:

f = 3.14
f / 2              # => 1.57
f / 2.0            # => 1.57
f / Rational(2, 1) # => 1.57
f / Complex(2, 0)  # => (1.57+0.0i)

Returns true if self is numerically less than other:

2.0 < 3              # => true
2.0 < 3.0            # => true
2.0 < Rational(3, 1) # => true
2.0 < 2.0            # => false

Float::NAN < Float::NAN returns an implementation-dependent value.

Returns true if self is numerically less than or equal to other:

2.0 <= 3              # => true
2.0 <= 3.0            # => true
2.0 <= Rational(3, 1) # => true
2.0 <= 2.0            # => true
2.0 <= 1.0            # => false

Float::NAN <= Float::NAN returns an implementation-dependent value.

Returns a value that depends on the numeric relation between self and other:

  • -1, if self is less than other.

  • 0, if self is equal to other.

  • 1, if self is greater than other.

  • nil, if the two values are incommensurate.

Examples:

2.0 <=> 2              # => 0
2.0 <=> 2.0            # => 0
2.0 <=> Rational(2, 1) # => 0
2.0 <=> Complex(2, 0)  # => 0
2.0 <=> 1.9            # => 1
2.0 <=> 2.1            # => -1
2.0 <=> 'foo'          # => nil

This is the basis for the tests in the Comparable module.

Float::NAN <=> Float::NAN returns an implementation-dependent value.

Returns true if other has the same value as self, false otherwise:

2.0 == 2              # => true
2.0 == 2.0            # => true
2.0 == Rational(2, 1) # => true
2.0 == Complex(2, 0)  # => true

Float::NAN == Float::NAN returns an implementation-dependent value.

Related: Float#eql? (requires other to be a Float).

An alias for ==

Returns true if self is numerically greater than other:

2.0 > 1              # => true
2.0 > 1.0            # => true
2.0 > Rational(1, 2) # => true
2.0 > 2.0            # => false

Float::NAN > Float::NAN returns an implementation-dependent value.

Returns true if self is numerically greater than or equal to other:

2.0 >= 1              # => true
2.0 >= 1.0            # => true
2.0 >= Rational(1, 2) # => true
2.0 >= 2.0            # => true
2.0 >= 2.1            # => false

Float::NAN >= Float::NAN returns an implementation-dependent value.

Returns the absolute value of float.

(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56
34.56.abs      #=> 34.56

Float#magnitude is an alias for Float#abs.

Returns 0 if the value is positive, pi otherwise.

Returns the smallest number greater than or equal to self with a precision of ndigits decimal digits.

When ndigits is positive, returns a float with ndigits digits after the decimal point (as available):

f = 12345.6789
f.ceil(1) # => 12345.7
f.ceil(3) # => 12345.679
f = -12345.6789
f.ceil(1) # => -12345.6
f.ceil(3) # => -12345.678

When ndigits is non-positive, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.ceil(0)  # => 12346
f.ceil(-3) # => 13000
f = -12345.6789
f.ceil(0)  # => -12345
f.ceil(-3) # => -12000

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(2.1 / 0.7).ceil  #=> 4 (!)

Related: Float#floor.

Returns a 2-element array containing other converted to a Float and self:

f = 3.14                 # => 3.14
f.coerce(2)              # => [2.0, 3.14]
f.coerce(2.0)            # => [2.0, 3.14]
f.coerce(Rational(1, 2)) # => [0.5, 3.14]
f.coerce(Complex(1, 0))  # => [1.0, 3.14]

Raises an exception if a type conversion fails.

Returns the denominator (always positive). The result is machine dependent.

See also Float#numerator.

Returns a 2-element array [q, r], where

q = (self/other).floor      # Quotient
r = self % other            # Remainder

Examples:

11.0.divmod(4)              # => [2, 3.0]
11.0.divmod(-4)             # => [-3, -1.0]
-11.0.divmod(4)             # => [-3, 1.0]
-11.0.divmod(-4)            # => [2, -3.0]

12.0.divmod(4)              # => [3, 0.0]
12.0.divmod(-4)             # => [-3, 0.0]
-12.0.divmod(4)             # => [-3, -0.0]
-12.0.divmod(-4)            # => [3, -0.0]

13.0.divmod(4.0)            # => [3, 1.0]
13.0.divmod(Rational(4, 1)) # => [3, 1.0]

Returns true if other is a Float with the same value as self, false otherwise:

2.0.eql?(2.0)            # => true
2.0.eql?(1.0)            # => false
2.0.eql?(1)              # => false
2.0.eql?(Rational(2, 1)) # => false
2.0.eql?(Complex(2, 0))  # => false

Float::NAN.eql?(Float::NAN) returns an implementation-dependent value.

Related: Float#== (performs type conversions).

An alias for quo

Returns true if self is not Infinity, -Infinity, or NaN, false otherwise:

f = 2.0      # => 2.0
f.finite?    # => true
f = 1.0/0.0  # => Infinity
f.finite?    # => false
f = -1.0/0.0 # => -Infinity
f.finite?    # => false
f = 0.0/0.0  # => NaN
f.finite?    # => false

Returns the largest number less than or equal to self with a precision of ndigits decimal digits.

When ndigits is positive, returns a float with ndigits digits after the decimal point (as available):

f = 12345.6789
f.floor(1) # => 12345.6
f.floor(3) # => 12345.678
f = -12345.6789
f.floor(1) # => -12345.7
f.floor(3) # => -12345.679

When ndigits is non-positive, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.floor(0)  # => 12345
f.floor(-3) # => 12000
f = -12345.6789
f.floor(0)  # => -12346
f.floor(-3) # => -13000

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(0.3 / 0.1).floor  #=> 2 (!)

Related: Float#ceil.

Returns the integer hash value for self.

See also Object#hash.

Returns:

  • 1, if self is Infinity.

  • -1 if self is -Infinity.

  • nil, otherwise.

Examples:

f = 1.0/0.0  # => Infinity
f.infinite?  # => 1
f = -1.0/0.0 # => -Infinity
f.infinite?  # => -1
f = 1.0      # => 1.0
f.infinite?  # => nil
f = 0.0/0.0  # => NaN
f.infinite?  # => nil
An alias for to_s
No documentation available
An alias for %

Returns true if self is a NaN, false otherwise.

f = -1.0     #=> -1.0
f.nan?       #=> false
f = 0.0/0.0  #=> NaN
f.nan?       #=> true

Returns true if float is less than 0.

Returns the next-larger representable Float.

These examples show the internally stored values (64-bit hexadecimal) for each Float f and for the corresponding f.next_float:

f = 0.0      # 0x0000000000000000
f.next_float # 0x0000000000000001

f = 0.01     # 0x3f847ae147ae147b
f.next_float # 0x3f847ae147ae147c

In the remaining examples here, the output is shown in the usual way (result to_s):

0.01.next_float    # => 0.010000000000000002
1.0.next_float     # => 1.0000000000000002
100.0.next_float   # => 100.00000000000001

f = 0.01
(0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }

Output:

 0 0x1.47ae147ae147bp-7 0.01
 1 0x1.47ae147ae147cp-7 0.010000000000000002
 2 0x1.47ae147ae147dp-7 0.010000000000000004
 3 0x1.47ae147ae147ep-7 0.010000000000000005

f = 0.0; 100.times { f += 0.1 }
f                           # => 9.99999999999998       # should be 10.0 in the ideal world.
10-f                        # => 1.9539925233402755e-14 # the floating point error.
10.0.next_float-10          # => 1.7763568394002505e-15 # 1 ulp (unit in the last place).
(10-f)/(10.0.next_float-10) # => 11.0                   # the error is 11 ulp.
(10-f)/(10*Float::EPSILON)  # => 8.8                    # approximation of the above.
"%a" % 10                   # => "0x1.4p+3"
"%a" % f                    # => "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.

Related: Float#prev_float

Returns the numerator. The result is machine dependent.

n = 0.3.numerator    #=> 5404319552844595
d = 0.3.denominator  #=> 18014398509481984
n.fdiv(d)            #=> 0.3

See also Float#denominator.

Returns true if float is greater than 0.

Returns the next-smaller representable Float.

These examples show the internally stored values (64-bit hexadecimal) for each Float f and for the corresponding f.pev_float:

f = 5e-324   # 0x0000000000000001
f.prev_float # 0x0000000000000000

f = 0.01     # 0x3f847ae147ae147b
f.prev_float # 0x3f847ae147ae147a

In the remaining examples here, the output is shown in the usual way (result to_s):

0.01.prev_float   # => 0.009999999999999998
1.0.prev_float    # => 0.9999999999999999
100.0.prev_float  # => 99.99999999999999

f = 0.01
(0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.prev_float }

Output:

0 0x1.47ae147ae147bp-7 0.01
1 0x1.47ae147ae147ap-7 0.009999999999999998
2 0x1.47ae147ae1479p-7 0.009999999999999997
3 0x1.47ae147ae1478p-7 0.009999999999999995

Related: Float#next_float.

Returns the quotient from dividing self by other:

f = 3.14
f.quo(2)              # => 1.57
f.quo(-2)             # => -1.57
f.quo(Rational(2, 1)) # => 1.57
f.quo(Complex(2, 0))  # => (1.57+0.0i)

Float#fdiv is an alias for Float#quo.

Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps is not given, it will be chosen automatically.

0.3.rationalize          #=> (3/10)
1.333.rationalize        #=> (1333/1000)
1.333.rationalize(0.01)  #=> (4/3)

See also Float#to_r.

Returns self rounded to the nearest value with a precision of ndigits decimal digits.

When ndigits is non-negative, returns a float with ndigits after the decimal point (as available):

f = 12345.6789
f.round(1) # => 12345.7
f.round(3) # => 12345.679
f = -12345.6789
f.round(1) # => -12345.7
f.round(3) # => -12345.679

When ndigits is negative, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.round(0)  # => 12346
f.round(-3) # => 12000
f = -12345.6789
f.round(0)  # => -12346
f.round(-3) # => -12000

If keyword argument half is given, and self is equidistant from the two candidate values, the rounding is according to the given half value:

  • :up or nil: round away from zero:

    2.5.round(half: :up)      # => 3
    3.5.round(half: :up)      # => 4
    (-2.5).round(half: :up)   # => -3
    
  • :down: round toward zero:

    2.5.round(half: :down)    # => 2
    3.5.round(half: :down)    # => 3
    (-2.5).round(half: :down) # => -2
    
  • :even: round toward the candidate whose last nonzero digit is even:

    2.5.round(half: :even)    # => 2
    3.5.round(half: :even)    # => 4
    (-2.5).round(half: :even) # => -2
    

Raises and exception if the value for half is invalid.

Related: Float#truncate.

Returns the value of float as a BigDecimal. The precision parameter is used to determine the number of significant digits for the result. When precision is set to 0, the number of digits to represent the float being converted is determined automatically. The default precision is 0.

require 'bigdecimal'
require 'bigdecimal/util'

0.5.to_d         # => 0.5e0
1.234.to_d       # => 0.1234e1
1.234.to_d(2)    # => 0.12e1

See also BigDecimal::new.

Since float is already a Float, returns self.

Returns self truncated to an Integer.

1.2.to_i    # => 1
(-1.2).to_i # => -1

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(0.3 / 0.1).to_i  # => 2 (!)

Float#to_int is an alias for Float#to_i.

An alias for to_i

Returns the value as a rational.

2.0.to_r    #=> (2/1)
2.5.to_r    #=> (5/2)
-0.75.to_r  #=> (-3/4)
0.0.to_r    #=> (0/1)
0.3.to_r    #=> (5404319552844595/18014398509481984)

NOTE: 0.3.to_r isn’t the same as “0.3”.to_r. The latter is equivalent to “3/10”.to_r, but the former isn’t so.

0.3.to_r   == 3/10r  #=> false
"0.3".to_r == 3/10r  #=> true

See also Float#rationalize.

Returns a string containing a representation of self; depending of the value of self, the string representation may contain:

  • A fixed-point number.

  • A number in “scientific notation” (containing an exponent).

  • ‘Infinity’.

  • ‘-Infinity’.

  • ‘NaN’ (indicating not-a-number).

    3.14.to_s # => “3.14” (10.1**50).to_s # => “1.644631821843879e+50” (10.1**500).to_s # => “Infinity” (-10.1**500).to_s # => “-Infinity” (0.0/0.0).to_s # => “NaN”

Returns self truncated (toward zero) to a precision of ndigits decimal digits.

When ndigits is positive, returns a float with ndigits digits after the decimal point (as available):

f = 12345.6789
f.truncate(1) # => 12345.6
f.truncate(3) # => 12345.678
f = -12345.6789
f.truncate(1) # => -12345.6
f.truncate(3) # => -12345.678

When ndigits is negative, returns an integer with at least ndigits.abs trailing zeros:

f = 12345.6789
f.truncate(0)  # => 12345
f.truncate(-3) # => 12000
f = -12345.6789
f.truncate(0)  # => -12345
f.truncate(-3) # => -12000

Note that the limited precision of floating-point arithmetic may lead to surprising results:

(0.3 / 0.1).truncate  #=> 2 (!)

Related: Float#round.

Returns true if float is 0.0.