An Integer object represents an integer value.
You can create an Integer object explicitly with:
-
An integer literal.
You can convert certain objects to Integers with:
-
Method Integer.
An attempt to add a singleton method to an instance of this class causes an exception to be raised.
What’s Here
First, what’s elsewhere. Class Integer:
-
Inherits from class Numeric.
Here, class Integer provides methods for:
Querying
allbits?
-
Returns whether all bits in
self
are set.
anybits?
-
Returns whether any bits in
self
are set.
nobits?
-
Returns whether no bits in
self
are set.
Comparing
- <
-
Returns whether
self
is less than the given value.
- <=
-
Returns whether
self
is less than or equal to the given value.
- <=>
-
Returns a number indicating whether
self
is less than, equal to, or greater than the given value.
- >
-
Returns whether
self
is greater than the given value.
- >=
-
Returns whether
self
is greater than or equal to the given value.
Converting
::sqrt
-
Returns the integer square root of the given value.
::try_convert
-
Returns the given value converted to an Integer.
- &
-
Returns the bitwise AND of
self
and the given value.
*
-
Returns the product of
self
and the given value.
- **
-
Returns the value of
self
raised to the power of the given value.
+
-
Returns the sum of
self
and the given value.
-
-
Returns the difference of
self
and the given value.
- /
-
Returns the quotient of
self
and the given value.
<<
-
Returns the value of
self
after a leftward bit-shift.
>>
-
Returns the value of
self
after a rightward bit-shift.
[]
-
Returns a slice of bits from
self
.
- ^
-
Returns the bitwise EXCLUSIVE OR of
self
and the given value.
ceil
-
Returns the smallest number greater than or equal to
self
.
chr
-
Returns a 1-character string containing the character represented by the value of
self
.
digits
-
Returns an array of integers representing the base-radix digits of
self
.
div
-
Returns the integer result of dividing
self
by the given value.
divmod
-
Returns a 2-element array containing the quotient and remainder results of dividing
self
by the given value.
floor
-
Returns the greatest number smaller than or equal to
self
.
pow
-
Returns the modular exponentiation of
self
.
pred
-
Returns the integer predecessor of
self
.
remainder
-
Returns the remainder after dividing
self
by the given value.
round
-
Returns
self
rounded to the nearest value with the given precision.
truncate
-
Returns
self
truncated to the given precision.
- /
-
Returns the bitwise OR of
self
and the given value.
Other
The version of loaded GMP.
static VALUE
rb_int_s_isqrt(VALUE self, VALUE num)
{
unsigned long n, sq;
num = rb_to_int(num);
if (FIXNUM_P(num)) {
if (FIXNUM_NEGATIVE_P(num)) {
domain_error("isqrt");
}
n = FIX2ULONG(num);
sq = rb_ulong_isqrt(n);
return LONG2FIX(sq);
}
else {
size_t biglen;
if (RBIGNUM_NEGATIVE_P(num)) {
domain_error("isqrt");
}
biglen = BIGNUM_LEN(num);
if (biglen == 0) return INT2FIX(0);
#if SIZEOF_BDIGIT <= SIZEOF_LONG
/* short-circuit */
if (biglen == 1) {
n = BIGNUM_DIGITS(num)[0];
sq = rb_ulong_isqrt(n);
return ULONG2NUM(sq);
}
#endif
return rb_big_isqrt(num);
}
}
Returns the integer square root of the non-negative integer n
, which is the largest non-negative integer less than or equal to the square root of numeric
.
Integer.sqrt(0) # => 0 Integer.sqrt(1) # => 1 Integer.sqrt(24) # => 4 Integer.sqrt(25) # => 5 Integer.sqrt(10**400) # => 10**200
If numeric
is not an Integer, it is converted to an Integer:
Integer.sqrt(Complex(4, 0)) # => 2 Integer.sqrt(Rational(4, 1)) # => 2 Integer.sqrt(4.0) # => 2 Integer.sqrt(3.14159) # => 1
This method is equivalent to Math.sqrt(numeric).floor
, except that the result of the latter code may differ from the true value due to the limited precision of floating point arithmetic.
Integer.sqrt(10**46) # => 100000000000000000000000 Math.sqrt(10**46).floor # => 99999999999999991611392
Raises an exception if numeric
is negative.
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 247
def Integer.try_convert(num)
=begin
Primitive.attr! 'inline'
Primitive.cexpr! 'rb_check_integer_type(num)'
=end
end
If object
is an Integer object, returns object
.
Integer.try_convert(1) # => 1
Otherwise if object
responds to :to_int
, calls object.to_int
and returns the result.
Integer.try_convert(1.25) # => 1
Returns nil
if object
does not respond to :to_int
Integer.try_convert([]) # => nil
Raises an exception unless object.to_int
returns an Integer object.
VALUE
rb_int_modulo(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_mod(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_modulo(x, y);
}
return num_modulo(x, y);
}
Returns self
modulo other
as a real number.
For integer n
and real number r
, these expressions are equivalent:
n % r n-r*(n/r).floor n.divmod(r)[1]
See Numeric#divmod
.
Examples:
10 % 2 # => 0 10 % 3 # => 1 10 % 4 # => 2 10 % -2 # => 0 10 % -3 # => -2 10 % -4 # => -2 10 % 3.0 # => 1.0 10 % Rational(3, 1) # => (1/1)
Integer#modulo
is an alias for Integer#%
.
VALUE
rb_int_and(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_and(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_and(x, y);
}
return Qnil;
}
VALUE
rb_int_mul(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_mul(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_mul(x, y);
}
return rb_num_coerce_bin(x, y, '*');
}
Performs multiplication:
4 * 2 # => 8 4 * -2 # => -8 -4 * 2 # => -8 4 * 2.0 # => 8.0 4 * Rational(1, 3) # => (4/3) 4 * Complex(2, 0) # => (8+0i)
VALUE
rb_int_pow(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_pow(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_pow(x, y);
}
return Qnil;
}
Raises self
to the power of numeric
:
2 ** 3 # => 8 2 ** -3 # => (1/8) -2 ** 3 # => -8 -2 ** -3 # => (-1/8) 2 ** 3.3 # => 9.849155306759329 2 ** Rational(3, 1) # => (8/1) 2 ** Complex(3, 0) # => (8+0i)
VALUE
rb_int_plus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_plus(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_plus(x, y);
}
return rb_num_coerce_bin(x, y, '+');
}
Performs addition:
2 + 2 # => 4 -2 + 2 # => 0 -2 + -2 # => -4 2 + 2.0 # => 4.0 2 + Rational(2, 1) # => (4/1) 2 + Complex(2, 0) # => (4+0i)
VALUE
rb_int_minus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_minus(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_minus(x, y);
}
return rb_num_coerce_bin(x, y, '-');
}
Performs subtraction:
4 - 2 # => 2 -4 - 2 # => -6 -4 - -2 # => -2 4 - 2.0 # => 2.0 4 - Rational(2, 1) # => (2/1) 4 - Complex(2, 0) # => (2+0i)
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 52
def -@
Primitive.attr! 'inline'
Primitive.cexpr! 'rb_int_uminus(self)'
end
Returns int
, negated.
VALUE
rb_int_div(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_div(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_div(x, y);
}
return Qnil;
}
Performs division; for integer numeric
, truncates the result to an integer:
4 / 3 # => 1 4 / -3 # => -2 -4 / 3 # => -2 -4 / -3 # => 1 For other +numeric+, returns non-integer result: 4 / 3.0 # => 1.3333333333333333 4 / Rational(3, 1) # => (4/3) 4 / Complex(3, 0) # => ((4/3)+0i)
static VALUE
int_lt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_lt(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_lt(x, y);
}
return Qnil;
}
Returns true
if the value of self
is less than that of other
:
1 < 0 # => false 1 < 1 # => false 1 < 2 # => true 1 < 0.5 # => false 1 < Rational(1, 2) # => false Raises an exception if the comparison cannot be made.
VALUE
rb_int_lshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return rb_fix_lshift(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_lshift(x, y);
}
return Qnil;
}
Returns self
with bits shifted count
positions to the left, or to the right if count
is negative:
n = 0b11110000 "%08b" % (n << 1) # => "111100000" "%08b" % (n << 3) # => "11110000000" "%08b" % (n << -1) # => "01111000" "%08b" % (n << -3) # => "00011110"
Related: Integer#>>
.
static VALUE
int_le(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_le(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_le(x, y);
}
return Qnil;
}
Returns true
if the value of self
is less than or equal to that of other
:
1 <= 0 # => false 1 <= 1 # => true 1 <= 2 # => true 1 <= 0.5 # => false 1 <= Rational(1, 2) # => false
Raises an exception if the comparison cannot be made.
VALUE
rb_int_cmp(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_cmp(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_cmp(x, y);
}
else {
rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x));
}
}
Returns:
-
-1, if
self
is less thanother
. -
0, if
self
is equal toother
. -
1, if
self
is greater thenother
. -
nil
, ifself
andother
are incomparable.
Examples:
1 <=> 2 # => -1 1 <=> 1 # => 0 1 <=> 0 # => 1 1 <=> 'foo' # => nil 1 <=> 1.0 # => 0 1 <=> Rational(1, 1) # => 0 1 <=> Complex(1, 0) # => 0
This method is the basis for comparisons in module Comparable
.
VALUE
rb_int_equal(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_equal(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_eq(x, y);
}
return Qnil;
}
Returns true
if self
is numerically equal to other
; false
otherwise.
1 == 2 #=> false 1 == 1.0 #=> true
Related: Integer#eql?
(requires other
to be an Integer).
Integer#===
is an alias for Integer#==
.
VALUE
rb_int_gt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_gt(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_gt(x, y);
}
return Qnil;
}
Returns true
if the value of self
is greater than that of other
:
1 > 0 # => true 1 > 1 # => false 1 > 2 # => false 1 > 0.5 # => true 1 > Rational(1, 2) # => true Raises an exception if the comparison cannot be made.
VALUE
rb_int_ge(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_ge(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_ge(x, y);
}
return Qnil;
}
Returns true
if the value of self
is greater than or equal to that of other
:
1 >= 0 # => true 1 >= 1 # => true 1 >= 2 # => false 1 >= 0.5 # => true 1 >= Rational(1, 2) # => true
Raises an exception if the comparison cannot be made.
static VALUE
rb_int_rshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return rb_fix_rshift(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_rshift(x, y);
}
return Qnil;
}
Returns self
with bits shifted count
positions to the right, or to the left if count
is negative:
n = 0b11110000 "%08b" % (n >> 1) # => "01111000" "%08b" % (n >> 3) # => "00011110" "%08b" % (n >> -1) # => "111100000" "%08b" % (n >> -3) # => "11110000000"
Related: Integer#<<
.
static VALUE
int_aref(int const argc, VALUE * const argv, VALUE const num)
{
rb_check_arity(argc, 1, 2);
if (argc == 2) {
return int_aref2(num, argv[0], argv[1]);
}
return int_aref1(num, argv[0]);
return Qnil;
}
Returns a slice of bits from self
.
With argument offset
, returns the bit at the given offset, where offset 0 refers to the least significant bit:
n = 0b10 # => 2 n[0] # => 0 n[1] # => 1 n[2] # => 0 n[3] # => 0
In principle, n[i]
is equivalent to (n >> i) & 1
. Thus, negative index always returns zero:
255[-1] # => 0
With arguments offset
and size
, returns size
bits from self
, beginning at offset
and including bits of greater significance:
n = 0b111000 # => 56 "%010b" % n[0, 10] # => "0000111000" "%010b" % n[4, 10] # => "0000000011"
With argument range
, returns range.size
bits from self
, beginning at range.begin
and including bits of greater significance:
n = 0b111000 # => 56 "%010b" % n[0..9] # => "0000111000" "%010b" % n[4..9] # => "0000000011"
Raises an exception if the slice cannot be constructed.
static VALUE
int_xor(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_xor(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_xor(x, y);
}
return Qnil;
}
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 84
def abs
Primitive.attr! 'inline'
Primitive.cexpr! 'rb_int_abs(self)'
end
Returns the absolute value of int
.
(-12345).abs #=> 12345 -12345.abs #=> 12345 12345.abs #=> 12345
Integer#magnitude
is an alias for Integer#abs
.
static VALUE
int_allbits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return rb_int_equal(rb_int_and(num, mask), mask);
}
Returns true
if all bits that are set (=1) in mask
are also set in self
; returns false
otherwise.
Example values:
0b1010101 self 0b1010100 mask 0b1010100 self & mask true self.allbits?(mask) 0b1010100 self 0b1010101 mask 0b1010100 self & mask false self.allbits?(mask)
Related: Integer#anybits?
, Integer#nobits?
.
static VALUE
int_anybits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return int_zero_p(rb_int_and(num, mask)) ? Qfalse : Qtrue;
}
Returns true
if any bit that is set (=1) in mask
is also set in self
; returns false
otherwise.
Example values:
0b10000010 self 0b11111111 mask 0b10000010 self & mask true self.anybits?(mask) 0b00000000 self 0b11111111 mask 0b00000000 self & mask false self.anybits?(mask)
Related: Integer#allbits?
, Integer#nobits?
.
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 130
def bit_length
Primitive.attr! 'inline'
Primitive.cexpr! 'rb_int_bit_length(self)'
end
Returns the number of bits of the value of int
.
“Number of bits” means the bit position of the highest bit which is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), zero is returned.
I.e. this method returns ceil(log2(int < 0 ? -int : int+1)).
(-2**1000-1).bit_length #=> 1001 (-2**1000).bit_length #=> 1000 (-2**1000+1).bit_length #=> 1000 (-2**12-1).bit_length #=> 13 (-2**12).bit_length #=> 12 (-2**12+1).bit_length #=> 12 -0x101.bit_length #=> 9 -0x100.bit_length #=> 8 -0xff.bit_length #=> 8 -2.bit_length #=> 1 -1.bit_length #=> 0 0.bit_length #=> 0 1.bit_length #=> 1 0xff.bit_length #=> 8 0x100.bit_length #=> 9 (2**12-1).bit_length #=> 12 (2**12).bit_length #=> 13 (2**12+1).bit_length #=> 13 (2**1000-1).bit_length #=> 1000 (2**1000).bit_length #=> 1001 (2**1000+1).bit_length #=> 1001
This method can be used to detect overflow in Array#pack
as follows:
if n.bit_length < 32 [n].pack("l") # no overflow else raise "overflow" end
static VALUE
int_ceil(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_ceil(num, ndigits);
}
Returns the smallest number greater than or equal to self
with a precision of ndigits
decimal digits.
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros:
555.ceil(-1) # => 560 555.ceil(-2) # => 600 -555.ceil(-2) # => -500 555.ceil(-3) # => 1000
Returns self
when ndigits
is zero or positive.
555.ceil # => 555 555.ceil(50) # => 555
Related: Integer#floor
.
static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
char c;
unsigned int i;
rb_encoding *enc;
if (rb_num_to_uint(num, &i) == 0) {
}
else if (FIXNUM_P(num)) {
rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
}
else {
rb_raise(rb_eRangeError, "bignum out of char range");
}
switch (argc) {
case 0:
if (0xff < i) {
enc = rb_default_internal_encoding();
if (!enc) {
rb_raise(rb_eRangeError, "%u out of char range", i);
}
goto decode;
}
c = (char)i;
if (i < 0x80) {
return rb_usascii_str_new(&c, 1);
}
else {
return rb_str_new(&c, 1);
}
case 1:
break;
default:
rb_error_arity(argc, 0, 1);
}
enc = rb_to_encoding(argv[0]);
if (!enc) enc = rb_ascii8bit_encoding();
decode:
return rb_enc_uint_chr(i, enc);
}
Returns a 1-character string containing the character represented by the value of self
, according to the given encoding
.
65.chr # => "A" 0..chr # => "\x00" 255.chr # => "\xFF" string = 255.chr(Encoding::UTF_8) string.encoding # => Encoding::UTF_8
Raises an exception if self
is negative.
Related: Integer#ord
.
static VALUE
rb_int_coerce(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(y)) {
return rb_assoc_new(y, x);
}
else {
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
}
Returns an array with both a numeric
and a big
represented as Bignum objects.
This is achieved by converting numeric
to a Bignum.
A TypeError
is raised if the numeric
is not a Fixnum or Bignum type.
(0x3FFFFFFFFFFFFFFF+1).coerce(42) #=> [42, 4611686018427387904]
static VALUE
integer_denominator(VALUE self)
{
return INT2FIX(1);
}
Returns 1.
static VALUE
rb_int_digits(int argc, VALUE *argv, VALUE num)
{
VALUE base_value;
long base;
if (rb_num_negative_p(num))
rb_raise(rb_eMathDomainError, "out of domain");
if (rb_check_arity(argc, 0, 1)) {
base_value = rb_to_int(argv[0]);
if (!RB_INTEGER_TYPE_P(base_value))
rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
rb_obj_classname(argv[0]));
if (RB_BIGNUM_TYPE_P(base_value))
return rb_int_digits_bigbase(num, base_value);
base = FIX2LONG(base_value);
if (base < 0)
rb_raise(rb_eArgError, "negative radix");
else if (base < 2)
rb_raise(rb_eArgError, "invalid radix %ld", base);
}
else
base = 10;
if (FIXNUM_P(num))
return rb_fix_digits(num, base);
else if (RB_BIGNUM_TYPE_P(num))
return rb_int_digits_bigbase(num, LONG2FIX(base));
return Qnil;
}
Returns an array of integers representing the base
-radix digits of self
; the first element of the array represents the least significant digit:
12345.digits # => [5, 4, 3, 2, 1] 12345.digits(7) # => [4, 6, 6, 0, 5] 12345.digits(100) # => [45, 23, 1]
Raises an exception if self
is negative or base
is less than 2.
VALUE
rb_int_idiv(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_idiv(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_idiv(x, y);
}
return num_div(x, y);
}
Performs integer division; returns the integer result of dividing self
by numeric
:
4.div(3) # => 1 4.div(-3) # => -2 -4.div(3) # => -2 -4.div(-3) # => 1 4.div(3.0) # => 1 4.div(Rational(3, 1)) # => 1 Raises an exception if +numeric+ does not have method +div+.
VALUE
rb_int_divmod(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_divmod(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_divmod(x, y);
}
return Qnil;
}
Returns a 2-element array [q, r]
, where
q = (self/other).floor # Quotient r = self % other # Remainder
Examples:
11.divmod(4) # => [2, 3] 11.divmod(-4) # => [-3, -1] -11.divmod(4) # => [-3, 1] -11.divmod(-4) # => [2, -3] 12.divmod(4) # => [3, 0] 12.divmod(-4) # => [-3, 0] -12.divmod(4) # => [-3, 0] -12.divmod(-4) # => [3, 0] 13.divmod(4.0) # => [3, 1.0] 13.divmod(Rational(4, 1)) # => [3, (1/1)]
static VALUE
int_downto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i=FIX2LONG(from); i >= end; i--) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '<', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '-', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}
Calls the given block with each integer value from self
down to limit
; returns self
:
a = [] 10.downto(5) {|i| a << i } # => 10 a # => [10, 9, 8, 7, 6, 5] a = [] 0.downto(-5) {|i| a << i } # => 0 a # => [0, -1, -2, -3, -4, -5] 4.downto(5) {|i| fail 'Cannot happen' } # => 4
With no block given, returns an Enumerator
.
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 139
def even?
Primitive.attr! 'inline'
Primitive.cexpr! 'rb_int_even_p(self)'
end
Returns true
if int
is an even number.
VALUE
rb_int_fdiv(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(x)) {
return DBL2NUM(rb_int_fdiv_double(x, y));
}
return Qnil;
}
static VALUE
int_floor(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_floor(num, ndigits);
}
Returns the largest number less than or equal to self
with a precision of ndigits
decimal digits.
When ndigits
is negative, the returned value has at least ndigits.abs
trailing zeros:
555.floor(-1) # => 550 555.floor(-2) # => 500 -555.floor(-2) # => -600 555.floor(-3) # => 0
Returns self
when ndigits
is zero or positive.
555.floor # => 555 555.floor(50) # => 555
Related: Integer#ceil
.
VALUE
rb_gcd(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_gcd(self, other);
}
Returns the greatest common divisor of the two integers. The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.
36.gcd(60) #=> 12 2.gcd(2) #=> 2 3.gcd(-7) #=> 1 ((1<<31)-1).gcd((1<<61)-1) #=> 1
VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}
Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].
36.gcdlcm(60) #=> [12, 180] 2.gcdlcm(2) #=> [2, 2] 3.gcdlcm(-7) #=> [1, 21] ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 148
def integer?
return true
end
Since int
is already an Integer
, this always returns true
.
VALUE
rb_lcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_lcm(self, other);
}
Returns the least common multiple of the two integers. The result is always positive. 0.lcm(x) and x.lcm(0) return zero.
36.lcm(60) #=> 180 2.lcm(2) #=> 2 3.lcm(-7) #=> 21 ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
static VALUE
int_nobits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
return int_zero_p(rb_int_and(num, mask));
}
Returns true
if no bit that is set (=1) in mask
is also set in self
; returns false
otherwise.
Example values:
0b11110000 self 0b00001111 mask 0b00000000 self & mask true self.nobits?(mask) 0b00000001 self 0b11111111 mask 0b00000001 self & mask false self.nobits?(mask)
Related: Integer#allbits?
, Integer#anybits?
.
static VALUE
integer_numerator(VALUE self)
{
return self;
}
Returns self.
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 164
def odd?
Primitive.attr! 'inline'
Primitive.cexpr! 'rb_int_odd_p(self)'
end
Returns true
if int
is an odd number.
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 180
def ord
return self
end
Returns the int
itself.
97.ord #=> 97
This method is intended for compatibility to character literals in Ruby 1.9.
For example, ?a.ord
returns 97 both in 1.8 and 1.9.
VALUE
rb_int_powm(int const argc, VALUE * const argv, VALUE const num)
{
rb_check_arity(argc, 1, 2);
if (argc == 1) {
return rb_int_pow(num, argv[0]);
}
else {
VALUE const a = num;
VALUE const b = argv[0];
VALUE m = argv[1];
int nega_flg = 0;
if ( ! RB_INTEGER_TYPE_P(b)) {
rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer");
}
if (rb_int_negative_p(b)) {
rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified");
}
if (!RB_INTEGER_TYPE_P(m)) {
rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers");
}
if (rb_int_negative_p(m)) {
m = rb_int_uminus(m);
nega_flg = 1;
}
if (FIXNUM_P(m)) {
long const half_val = (long)HALF_LONG_MSB;
long const mm = FIX2LONG(m);
if (!mm) rb_num_zerodiv();
if (mm == 1) return INT2FIX(0);
if (mm <= half_val) {
return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg);
}
else {
return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg);
}
}
else {
if (rb_bigzero_p(m)) rb_num_zerodiv();
if (bignorm(m) == INT2FIX(1)) return INT2FIX(0);
return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg);
}
}
UNREACHABLE_RETURN(Qnil);
}
Returns (modular) exponentiation as:
a.pow(b) #=> same as a**b a.pow(b, m) #=> same as (a**b) % m, but avoids huge temporary values
static VALUE
rb_int_pred(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) - 1;
return LONG2NUM(i);
}
if (RB_BIGNUM_TYPE_P(num)) {
return rb_big_minus(num, INT2FIX(1));
}
return num_funcall1(num, '-', INT2FIX(1));
}
Returns the predecessor of self
(equivalent to self - 1
):
1.pred #=> 0 -1.pred #=> -2
Related: Integer#succ
(successor value).
static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 0, 1);
return integer_to_r(self);
}
Returns the value as a rational. The optional argument eps
is always ignored.
static VALUE
int_remainder(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return num_remainder(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_remainder(x, y);
}
return Qnil;
}
Returns the remainder after dividing self
by other
.
Examples:
11.remainder(4) # => 3 11.remainder(-4) # => 3 -11.remainder(4) # => -3 -11.remainder(-4) # => -3 12.remainder(4) # => 0 12.remainder(-4) # => 0 -12.remainder(4) # => 0 -12.remainder(-4) # => 0 13.remainder(4.0) # => 1.0 13.remainder(Rational(4, 1)) # => (1/1)
static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
int ndigits;
int mode;
VALUE nd, opt;
if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
ndigits = NUM2INT(nd);
mode = rb_num_get_rounding_option(opt);
if (ndigits >= 0) {
return num;
}
return rb_int_round(num, ndigits, mode);
}
Returns self
rounded to the nearest value with a precision of ndigits
decimal digits.
When ndigits
is negative, the returned value has at least ndigits.abs
trailing zeros:
555.round(-1) # => 560 555.round(-2) # => 600 555.round(-3) # => 1000 -555.round(-2) # => -600 555.round(-4) # => 0
Returns self
when ndigits
is zero or positive.
555.round # => 555 555.round(1) # => 555 555.round(50) # => 555
If keyword argument half
is given, and self
is equidistant from the two candidate values, the rounding is according to the given half
value:
-
:up
ornil
: round away from zero:25.round(-1, half: :up) # => 30 (-25).round(-1, half: :up) # => -30
-
:down
: round toward zero:25.round(-1, half: :down) # => 20 (-25).round(-1, half: :down) # => -20
-
:even
: round toward the candidate whose last nonzero digit is even:25.round(-1, half: :even) # => 20 15.round(-1, half: :even) # => 20 (-25).round(-1, half: :even) # => -20
Raises and exception if the value for half
is invalid.
Related: Integer#truncate
.
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 199
def size
Primitive.attr! 'inline'
Primitive.cexpr! 'rb_int_size(self)'
end
Document-method: Integer#size
Returns the number of bytes in the machine representation of int
(machine dependent).
1.size #=> 8 -1.size #=> 8 2147483647.size #=> 8 (256**10 - 1).size #=> 10 (256**20 - 1).size #=> 20 (256**40 - 1).size #=> 40
VALUE
rb_int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
if (RB_BIGNUM_TYPE_P(num)) {
return rb_big_plus(num, INT2FIX(1));
}
return num_funcall1(num, '+', INT2FIX(1));
}
Returns the successor integer of self
(equivalent to self + 1
):
1.succ #=> 2 -1.succ #=> 0
Integer#next
is an alias for Integer#succ
.
Related: Integer#pred
(predecessor value).
static VALUE
int_dotimes(VALUE num)
{
RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
if (FIXNUM_P(num)) {
long i, end;
end = FIX2LONG(num);
for (i=0; i<end; i++) {
rb_yield_1(LONG2FIX(i));
}
}
else {
VALUE i = INT2FIX(0);
for (;;) {
if (!RTEST(int_le(i, num))) break;
rb_yield(i);
i = rb_int_plus(i, INT2FIX(1));
}
}
return num;
}
Calls the given block self
times with each integer in (0..self-1)
:
a = [] 5.times {|i| a.push(i) } # => 5 a # => [0, 1, 2, 3, 4]
With no block given, returns an Enumerator
.
# File tmp/rubies/ruby-3.1.3/ext/openssl/lib/openssl/bn.rb, line 37
def to_bn
OpenSSL::BN::new(self)
end
Casts an Integer
as an OpenSSL::BN
See ‘man bn` for more info.
# File tmp/rubies/ruby-3.1.3/ext/bigdecimal/lib/bigdecimal/util.rb, line 23
def to_d
BigDecimal(self)
end
Returns the value of int
as a BigDecimal
.
require 'bigdecimal' require 'bigdecimal/util' 42.to_d # => 0.42e2
See also BigDecimal::new
.
static VALUE
int_to_f(VALUE num)
{
double val;
if (FIXNUM_P(num)) {
val = (double)FIX2LONG(num);
}
else if (RB_BIGNUM_TYPE_P(num)) {
val = rb_big2dbl(num);
}
else {
rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
}
return DBL2NUM(val);
}
Converts self
to a Float:
1.to_f # => 1.0 -1.to_f # => -1.0
If the value of self
does not fit in a Float, the result is infinity:
(10**400).to_f # => Infinity (-10**400).to_f # => -Infinity
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 210
def to_i
return self
end
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 218
def to_int
return self
end
Since int
is already an Integer
, returns self
.
static VALUE
integer_to_r(VALUE self)
{
return rb_rational_new1(self);
}
Returns the value as a rational.
1.to_r #=> (1/1) (1<<64).to_r #=> (18446744073709551616/1)
MJIT_FUNC_EXPORTED VALUE
rb_int_to_s(int argc, VALUE *argv, VALUE x)
{
int base;
if (rb_check_arity(argc, 0, 1))
base = NUM2INT(argv[0]);
else
base = 10;
return rb_int2str(x, base);
}
Returns a string containing the place-value representation of self
in radix base
(in 2..36).
12345.to_s # => "12345" 12345.to_s(2) # => "11000000111001" 12345.to_s(8) # => "30071" 12345.to_s(10) # => "12345" 12345.to_s(16) # => "3039" 12345.to_s(36) # => "9ix" 78546939656932.to_s(36) # => "rubyrules"
Raises an exception if base
is out of range.
Integer#inspect
is an alias for Integer#to_s
.
static VALUE
int_truncate(int argc, VALUE* argv, VALUE num)
{
int ndigits;
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
return num;
}
return rb_int_truncate(num, ndigits);
}
Returns self
truncated (toward zero) to a precision of ndigits
decimal digits.
When ndigits
is negative, the returned value has at least ndigits.abs
trailing zeros:
555.truncate(-1) # => 550 555.truncate(-2) # => 500 -555.truncate(-2) # => -500
Returns self
when ndigits
is zero or positive.
555.truncate # => 555 555.truncate(50) # => 555
Related: Integer#round
.
static VALUE
int_upto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i = FIX2LONG(from); i <= end; i++) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '>', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
ensure_cmp(c, i, to);
}
return from;
}
Calls the given block with each integer value from self
up to limit
; returns self
:
a = [] 5.upto(10) {|i| a << i } # => 5 a # => [5, 6, 7, 8, 9, 10] a = [] -5.upto(0) {|i| a << i } # => -5 a # => [-5, -4, -3, -2, -1, 0] 5.upto(4) {|i| fail 'Cannot happen' } # => 5
With no block given, returns an Enumerator
.
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 226
def zero?
Primitive.attr! 'inline'
Primitive.cexpr! 'rb_int_zero_p(self)'
end
Returns true
if int
has a zero value.
static VALUE
int_or(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
return fix_or(x, y);
}
else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_or(x, y);
}
return Qnil;
}
# File tmp/rubies/ruby-3.1.3/numeric.rb, line 68
def ~
Primitive.attr! 'inline'
Primitive.cexpr! 'rb_int_comp(self)'
end
One’s complement: returns a number where each bit is flipped.
Inverts the bits in an Integer
. As integers are conceptually of infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.
sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"