Results for: "remove_const"

Immutable and read-only representation of a timestamp response returned from a timestamp server after receiving an associated Request. Allows access to specific information about the response but also allows to verify the Response.

No documentation available

Specifies a Specification object that should be activated. Also contains a dependency that was used to introduce this activation.

No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available

Module File::Constants defines file-related constants.

There are two families of constants here:

File constants defined for the local process may be retrieved with method File::Constants.constants:

File::Constants.constants.take(5)
# => [:RDONLY, :WRONLY, :RDWR, :APPEND, :CREAT]

File Access

File-access constants may be used with optional argument mode in calls to the following methods:

Read/Write Access

Read-write access for a stream may be specified by a file-access constant.

The constant may be specified as part of a bitwise OR of other such constants.

Any combination of the constants in this section may be specified.

File::RDONLY

Flag File::RDONLY specifies the stream should be opened for reading only:

filepath = '/tmp/t.tmp'
f = File.new(filepath, File::RDONLY)
f.write('Foo') # Raises IOError (not opened for writing).

File::WRONLY

Flag File::WRONLY specifies that the stream should be opened for writing only:

f = File.new(filepath, File::WRONLY)
f.read # Raises IOError (not opened for reading).

File::RDWR

Flag File::RDWR specifies that the stream should be opened for both reading and writing:

f = File.new(filepath, File::RDWR)
f.write('Foo') # => 3
f.rewind       # => 0
f.read         # => "Foo"

File Positioning

File::APPEND

Flag File::APPEND specifies that the stream should be opened in append mode.

Before each write operation, the position is set to end-of-stream. The modification of the position and the following write operation are performed as a single atomic step.

File::TRUNC

Flag File::TRUNC specifies that the stream should be truncated at its beginning. If the file exists and is successfully opened for writing, it is to be truncated to position zero; its ctime and mtime are updated.

There is no effect on a FIFO special file or a terminal device. The effect on other file types is implementation-defined. The result of using File::TRUNC with File::RDONLY is undefined.

Creating and Preserving

File::CREAT

Flag File::CREAT specifies that the stream should be created if it does not already exist.

If the file exists:

- Raise an exception if File::EXCL is also specified.
- Otherwise, do nothing.

If the file does not exist, then it is created. Upon successful completion, the atime, ctime, and mtime of the file are updated, and the ctime and mtime of the parent directory are updated.

File::EXCL

Flag File::EXCL specifies that the stream should not already exist; If flags File::CREAT and File::EXCL are both specified and the stream already exists, an exception is raised.

The check for the existence and creation of the file is performed as an atomic operation.

If both File::EXCL and File::CREAT are specified and the path names a symbolic link, an exception is raised regardless of the contents of the symbolic link.

If File::EXCL is specified and File::CREAT is not specified, the result is undefined.

POSIX File Constants

Some file-access constants are defined only on POSIX-compliant systems; those are:

File::SYNC, File::RSYNC, and File::DSYNC

Flag File::SYNC, File::RSYNC, or File::DSYNC specifies synchronization of I/O operations with the underlying file system.

These flags are valid only for POSIX-compliant systems.

Note that the behavior of these flags may vary slightly depending on the operating system and filesystem being used. Additionally, using these flags can have an impact on performance due to the synchronous nature of the I/O operations, so they should be used judiciously, especially in performance-critical applications.

File::NOCTTY

Flag File::NOCTTY specifies that if the stream is a terminal device, that device does not become the controlling terminal for the process.

Defined only for POSIX-compliant systems.

File::DIRECT

Flag File::DIRECT requests that cache effects of the I/O to and from the stream be minimized.

Defined only for POSIX-compliant systems.

File::NOATIME

Flag File::NOATIME specifies that act of opening the stream should not modify its access time (atime).

Defined only for POSIX-compliant systems.

File::NOFOLLOW

Flag File::NOFOLLOW specifies that if path is a symbolic link, it should not be followed.

Defined only for POSIX-compliant systems.

File::TMPFILE

Flag File::TMPFILE specifies that the opened stream should be a new temporary file.

Defined only for POSIX-compliant systems.

Other File-Access Constants

File::NONBLOCK

When possible, the file is opened in nonblocking mode. Neither the open operation nor any subsequent I/O operations on the file will cause the calling process to wait.

File::BINARY

Flag File::BINARY specifies that the stream is to be accessed in binary mode.

File::SHARE_DELETE

Flag File::SHARE_DELETE enables other processes to open the stream with delete access.

Windows only.

If the stream is opened for (local) delete access without File::SHARE_DELETE, and another process attempts to open it with delete access, the attempt fails and the stream is not opened for that process.

Locking

Four file constants relate to stream locking; see File#flock:

File::LOCK_EX

Flag File::LOCK_EX specifies an exclusive lock; only one process a a time may lock the stream.

File::LOCK_NB

Flag File::LOCK_NB specifies non-blocking locking for the stream; may be combined with File::LOCK_EX or File::LOCK_SH.

File::LOCK_SH

Flag File::LOCK_SH specifies that multiple processes may lock the stream at the same time.

File::LOCK_UN

Flag File::LOCK_UN specifies that the stream is not to be locked.

Filename Globbing Constants (File::FNM_*)

Filename-globbing constants may be used with optional argument flags in calls to the following methods:

The constants are:

File::FNM_CASEFOLD

Flag File::FNM_CASEFOLD makes patterns case insensitive for File.fnmatch (but not Dir.glob).

File::FNM_DOTMATCH

Flag File::FNM_DOTMATCH makes the '*' pattern match a filename starting with '.'.

File::FNM_EXTGLOB

Flag File::FNM_EXTGLOB enables pattern '{a,b}', which matches pattern ‘a’ and pattern ‘b’; behaves like a regexp union (e.g., '(?:a|b)'):

pattern = '{LEGAL,BSDL}'
Dir.glob(pattern)      # => ["LEGAL", "BSDL"]
Pathname.glob(pattern) # => [#<Pathname:LEGAL>, #<Pathname:BSDL>]
pathname.glob(pattern) # => [#<Pathname:LEGAL>, #<Pathname:BSDL>]

File::FNM_NOESCAPE

Flag File::FNM_NOESCAPE disables '\' escaping.

File::FNM_PATHNAME

Flag File::FNM_PATHNAME specifies that patterns '*' and '?' do not match the directory separator (the value of constant File::SEPARATOR).

File::FNM_SHORTNAME

Flag File::FNM_SHORTNAME allows patterns to match short names if they exist.

Windows only.

File::FNM_SYSCASE

Flag File::FNM_SYSCASE specifies that case sensitivity is the same as in the underlying operating system; effective for File.fnmatch, but not Dir.glob.

Other Constants

File::NULL

Flag File::NULL contains the string value of the null device:

No documentation available
No documentation available

IO wrapper that provides only write

No documentation available
No documentation available

An OpenSSL::OCSP::Request contains the certificate information for determining if a certificate has been revoked or not. A Request can be created for a certificate or from a DER-encoded request created elsewhere.

Allows to create timestamp requests or parse existing ones. A Request is also needed for creating timestamps from scratch with Factory. When created from scratch, some default values are set:

No documentation available
No documentation available

The X509 certificate store holds trusted CA certificates used to verify peer certificates.

The easiest way to create a useful certificate store is:

cert_store = OpenSSL::X509::Store.new
cert_store.set_default_paths

This will use your system’s built-in certificates.

If your system does not have a default set of certificates you can obtain a set extracted from Mozilla CA certificate store by cURL maintainers here: curl.haxx.se/docs/caextract.html (You may wish to use the firefox-db2pem.sh script to extract the certificates from a local install to avoid man-in-the-middle attacks.)

After downloading or generating a cacert.pem from the above link you can create a certificate store from the pem file like this:

cert_store = OpenSSL::X509::Store.new
cert_store.add_file 'cacert.pem'

The certificate store can be used with an SSLSocket like this:

ssl_context = OpenSSL::SSL::SSLContext.new
ssl_context.verify_mode = OpenSSL::SSL::VERIFY_PEER
ssl_context.cert_store = cert_store

tcp_socket = TCPSocket.open 'example.com', 443

ssl_socket = OpenSSL::SSL::SSLSocket.new tcp_socket, ssl_context
No documentation available

This handler will capture an event and record the event. Recorder events are available vial Psych::Handlers::Recorder#events.

For example:

recorder = Psych::Handlers::Recorder.new
parser = Psych::Parser.new recorder
parser.parse '--- foo'

recorder.events # => [list of events]

# Replay the events

emitter = Psych::Emitter.new $stdout
recorder.events.each do |m, args|
  emitter.send m, *args
end
No documentation available
Search took: 6ms  ·  Total Results: 3316