Results for: "module_function"

The objspace library extends the ObjectSpace module and adds several methods to get internal statistic information about object/memory management.

You need to require 'objspace' to use this extension module.

Generally, you SHOULD NOT use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.

The ObjectSpace module contains a number of routines that interact with the garbage collection facility and allow you to traverse all living objects with an iterator.

ObjectSpace also provides support for object finalizers, procs that will be called after a specific object was destroyed by garbage collection. See the documentation for ObjectSpace.define_finalizer for important information on how to use this method correctly.

a = "A"
b = "B"

ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" })

a = nil
b = nil

produces:

Finalizer two on 537763470
Finalizer one on 537763480

Timeout long-running blocks

Synopsis

require 'timeout'
status = Timeout.timeout(5) {
  # Something that should be interrupted if it takes more than 5 seconds...
}

Description

Timeout provides a way to auto-terminate a potentially long-running operation if it hasn’t finished in a fixed amount of time.

Copyright

© 2000 Network Applied Communication Laboratory, Inc.

Copyright

© 2000 Information-technology Promotion Agency, Japan

Specifies a Specification object that should be activated. Also contains a dependency that was used to introduce this activation.

No documentation available
No documentation available

RubyVM::AbstractSyntaxTree::Location instances are created by RubyVM::AbstractSyntaxTree::Node#locations.

This class is MRI specific.

The parent class for all constructed encodings. The value attribute of a Constructive is always an Array. Attributes are the same as for ASN1Data, with the addition of tagging.

SET and SEQUENCE

Most constructed encodings come in the form of a SET or a SEQUENCE. These encodings are represented by one of the two sub-classes of Constructive:

Please note that tagged sequences and sets are still parsed as instances of ASN1Data. Find further details on tagged values there.

Example - constructing a SEQUENCE

int = OpenSSL::ASN1::Integer.new(1)
str = OpenSSL::ASN1::PrintableString.new('abc')
sequence = OpenSSL::ASN1::Sequence.new( [ int, str ] )

Example - constructing a SET

int = OpenSSL::ASN1::Integer.new(1)
str = OpenSSL::ASN1::PrintableString.new('abc')
set = OpenSSL::ASN1::Set.new( [ int, str ] )
No documentation available

Raised when the buffer cannot be allocated for some reason, or you try to use a buffer that’s not allocated.

Class for representing HTTP method OPTIONS:

require 'net/http'
uri = URI('http://example.com')
hostname = uri.hostname # => "example.com"
req = Net::HTTP::Options.new(uri) # => #<Net::HTTP::Options OPTIONS>
res = Net::HTTP.start(hostname) do |http|
  http.request(req)
end

See Request Headers.

Properties:

Related:

Switch that can omit argument.

Raised when the query given to a pattern is either invalid Ruby syntax or is using syntax that we don’t yet support.

Represents a specification retrieved via the rubygems.org API.

This is used to avoid loading the full Specification object when all we need is the name, version, and dependencies.

A GitSpecification represents a gem that is sourced from a git repository and is being loaded through a gem dependencies file through the git: option.

Represents a possible Specification object returned from IndexSet. Used to delay needed to download full Specification objects when only the name and version are needed.

A LocalSpecification comes from a .gem file on the local filesystem.

The LockSpecification comes from a lockfile (Gem::RequestSet::Lockfile).

A LockSpecification’s dependency information is pre-filled from the lockfile.

The Resolver::SpecSpecification contains common functionality for Resolver specifications that are backed by a Gem::Specification.

A Resolver::Specification contains a subset of the information contained in a Gem::Specification. Only the information necessary for dependency resolution in the resolver is included.

A VendorSpecification represents a gem that has been unpacked into a project and is being loaded through a gem dependencies file through the path: option.

Gem::Security default exception type

An object representation of a stack frame, initialized by Kernel#caller_locations.

For example:

# caller_locations.rb
def a(skip)
  caller_locations(skip)
end
def b(skip)
  a(skip)
end
def c(skip)
  b(skip)
end

c(0..2).map do |call|
  puts call.to_s
end

Running ruby caller_locations.rb will produce:

caller_locations.rb:2:in `a'
caller_locations.rb:5:in `b'
caller_locations.rb:8:in `c'

Here’s another example with a slightly different result:

# foo.rb
class Foo
  attr_accessor :locations
  def initialize(skip)
    @locations = caller_locations(skip)
  end
end

Foo.new(0..2).locations.map do |call|
  puts call.to_s
end

Now run ruby foo.rb and you should see:

init.rb:4:in `initialize'
init.rb:8:in `new'
init.rb:8:in `<main>'

JSON::Coder holds a parser and generator configuration.

module MyApp
  JSONC_CODER = JSON::Coder.new(
    allow_trailing_comma: true
  )
end

MyApp::JSONC_CODER.load(document)

Generic error, common for all classes under OpenSSL module

If an object defines encode_with, then an instance of Psych::Coder will be passed to the method when the object is being serialized. The Coder automatically assumes a Psych::Nodes::Mapping is being emitted. Other objects like Sequence and Scalar may be emitted if seq= or scalar= are called, respectively.

Search took: 7ms  ·  Total Results: 3310