Results for: "OptionParser"

Raised when a file required (a Ruby script, extension library, …) fails to load.

require 'this/file/does/not/exist'

raises the exception:

LoadError: no such file to load -- this/file/does/not/exist

for RubyGems without Bundler environment. If loading library is not part of the default gems and the bundled gems, warn it.

Raised when a given name is invalid or undefined.

puts foo

raises the exception:

NameError: undefined local variable or method `foo' for main:Object

Since constant names must start with a capital:

Integer.const_set :answer, 42

raises the exception:

NameError: wrong constant name answer

Raised when a method is called on a receiver which doesn’t have it defined and also fails to respond with method_missing.

"hello".to_ary

raises the exception:

NoMethodError: undefined method `to_ary' for an instance of String

Raised when there is an attempt to modify a frozen object.

[1, 2, 3].freeze << 4

raises the exception:

FrozenError: can't modify frozen Array

Raised when memory allocation fails.

EncodingError is the base class for encoding errors.

SystemCallError is the base class for all low-level platform-dependent errors.

The errors available on the current platform are subclasses of SystemCallError and are defined in the Errno module.

File.open("does/not/exist")

raises the exception:

Errno::ENOENT: No such file or directory - does/not/exist

DateTime

A subclass of Date that easily handles date, hour, minute, second, and offset.

DateTime class is considered deprecated. Use Time class.

DateTime does not consider any leap seconds, does not track any summer time rules.

A DateTime object is created with DateTime::new, DateTime::jd, DateTime::ordinal, DateTime::commercial, DateTime::parse, DateTime::strptime, DateTime::now, Time#to_datetime, etc.

require 'date'

DateTime.new(2001,2,3,4,5,6)
                    #=> #<DateTime: 2001-02-03T04:05:06+00:00 ...>

The last element of day, hour, minute, or second can be a fractional number. The fractional number’s precision is assumed at most nanosecond.

DateTime.new(2001,2,3.5)
                    #=> #<DateTime: 2001-02-03T12:00:00+00:00 ...>

An optional argument, the offset, indicates the difference between the local time and UTC. For example, Rational(3,24) represents ahead of 3 hours of UTC, Rational(-5,24) represents behind of 5 hours of UTC. The offset should be -1 to +1, and its precision is assumed at most second. The default value is zero (equals to UTC).

DateTime.new(2001,2,3,4,5,6,Rational(3,24))
                    #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>

The offset also accepts string form:

DateTime.new(2001,2,3,4,5,6,'+03:00')
                    #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>

An optional argument, the day of calendar reform (start), denotes a Julian day number, which should be 2298874 to 2426355 or negative/positive infinity. The default value is Date::ITALY (2299161=1582-10-15).

A DateTime object has various methods. See each reference.

d = DateTime.parse('3rd Feb 2001 04:05:06+03:30')
                    #=> #<DateTime: 2001-02-03T04:05:06+03:30 ...>
d.hour              #=> 4
d.min               #=> 5
d.sec               #=> 6
d.offset            #=> (7/48)
d.zone              #=> "+03:30"
d += Rational('1.5')
                    #=> #<DateTime: 2001-02-04%16:05:06+03:30 ...>
d = d.new_offset('+09:00')
                    #=> #<DateTime: 2001-02-04%21:35:06+09:00 ...>
d.strftime('%I:%M:%S %p')
                    #=> "09:35:06 PM"
d > DateTime.new(1999)
                    #=> true

When should you use DateTime and when should you use Time?

It’s a common misconception that William Shakespeare and Miguel de Cervantes died on the same day in history - so much so that UNESCO named April 23 as World Book Day because of this fact. However, because England hadn’t yet adopted the Gregorian Calendar Reform (and wouldn’t until 1752) their deaths are actually 10 days apart. Since Ruby’s Time class implements a proleptic Gregorian calendar and has no concept of calendar reform there’s no way to express this with Time objects. This is where DateTime steps in:

shakespeare = DateTime.iso8601('1616-04-23', Date::ENGLAND)
 #=> Tue, 23 Apr 1616 00:00:00 +0000
cervantes = DateTime.iso8601('1616-04-23', Date::ITALY)
 #=> Sat, 23 Apr 1616 00:00:00 +0000

Already you can see something is weird - the days of the week are different. Taking this further:

cervantes == shakespeare
 #=> false
(shakespeare - cervantes).to_i
 #=> 10

This shows that in fact they died 10 days apart (in reality 11 days since Cervantes died a day earlier but was buried on the 23rd). We can see the actual date of Shakespeare’s death by using the gregorian method to convert it:

shakespeare.gregorian
 #=> Tue, 03 May 1616 00:00:00 +0000

So there’s an argument that all the celebrations that take place on the 23rd April in Stratford-upon-Avon are actually the wrong date since England is now using the Gregorian calendar. You can see why when we transition across the reform date boundary:

# start off with the anniversary of Shakespeare's birth in 1751
shakespeare = DateTime.iso8601('1751-04-23', Date::ENGLAND)
 #=> Tue, 23 Apr 1751 00:00:00 +0000

# add 366 days since 1752 is a leap year and April 23 is after February 29
shakespeare + 366
 #=> Thu, 23 Apr 1752 00:00:00 +0000

# add another 365 days to take us to the anniversary in 1753
shakespeare + 366 + 365
 #=> Fri, 04 May 1753 00:00:00 +0000

As you can see, if we’re accurately tracking the number of solar years since Shakespeare’s birthday then the correct anniversary date would be the 4th May and not the 23rd April.

So when should you use DateTime in Ruby and when should you use Time? Almost certainly you’ll want to use Time since your app is probably dealing with current dates and times. However, if you need to deal with dates and times in a historical context you’ll want to use DateTime to avoid making the same mistakes as UNESCO. If you also have to deal with timezones then best of luck - just bear in mind that you’ll probably be dealing with local solar times, since it wasn’t until the 19th century that the introduction of the railways necessitated the need for Standard Time and eventually timezones.

A Time object represents a date and time:

Time.new(2000, 1, 1, 0, 0, 0) # => 2000-01-01 00:00:00 -0600

Although its value can be expressed as a single numeric (see Epoch Seconds below), it can be convenient to deal with the value by parts:

t = Time.new(-2000, 1, 1, 0, 0, 0.0)
# => -2000-01-01 00:00:00 -0600
t.year # => -2000
t.month # => 1
t.mday # => 1
t.hour # => 0
t.min # => 0
t.sec # => 0
t.subsec # => 0

t = Time.new(2000, 12, 31, 23, 59, 59.5)
# => 2000-12-31 23:59:59.5 -0600
t.year # => 2000
t.month # => 12
t.mday # => 31
t.hour # => 23
t.min # => 59
t.sec # => 59
t.subsec # => (1/2)

Epoch Seconds

Epoch seconds is the exact number of seconds (including fractional subseconds) since the Unix Epoch, January 1, 1970.

You can retrieve that value exactly using method Time.to_r:

Time.at(0).to_r        # => (0/1)
Time.at(0.999999).to_r # => (9007190247541737/9007199254740992)

Other retrieval methods such as Time#to_i and Time#to_f may return a value that rounds or truncates subseconds.

Time Resolution

A Time object derived from the system clock (for example, by method Time.now) has the resolution supported by the system.

Time Internal Representation

Time implementation uses a signed 63 bit integer, Integer, or Rational. It is a number of nanoseconds since the Epoch. The signed 63 bit integer can represent 1823-11-12 to 2116-02-20. When Integer or Rational is used (before 1823, after 2116, under nanosecond), Time works slower than when the signed 63 bit integer is used.

Ruby uses the C function localtime and gmtime to map between the number and 6-tuple (year,month,day,hour,minute,second). localtime is used for local time and “gmtime” is used for UTC.

Integer and Rational has no range limit, but the localtime and gmtime has range limits due to the C types time_t and struct tm. If that limit is exceeded, Ruby extrapolates the localtime function.

The Time class always uses the Gregorian calendar. I.e. the proleptic Gregorian calendar is used. Other calendars, such as Julian calendar, are not supported.

time_t can represent 1901-12-14 to 2038-01-19 if it is 32 bit signed integer, -292277022657-01-27 to 292277026596-12-05 if it is 64 bit signed integer. However localtime on some platforms doesn’t supports negative time_t (before 1970).

struct tm has tm_year member to represent years. (tm_year = 0 means the year 1900.) It is defined as int in the C standard. tm_year can represent between -2147481748 to 2147485547 if int is 32 bit.

Ruby supports leap seconds as far as if the C function localtime and gmtime supports it. They use the tz database in most Unix systems. The tz database has timezones which supports leap seconds. For example, “Asia/Tokyo” doesn’t support leap seconds but “right/Asia/Tokyo” supports leap seconds. So, Ruby supports leap seconds if the TZ environment variable is set to “right/Asia/Tokyo” in most Unix systems.

Examples

All of these examples were done using the EST timezone which is GMT-5.

Creating a New Time Instance

You can create a new instance of Time with Time.new. This will use the current system time. Time.now is an alias for this. You can also pass parts of the time to Time.new such as year, month, minute, etc. When you want to construct a time this way you must pass at least a year. If you pass the year with nothing else time will default to January 1 of that year at 00:00:00 with the current system timezone. Here are some examples:

Time.new(2002)         #=> 2002-01-01 00:00:00 -0500
Time.new(2002, 10)     #=> 2002-10-01 00:00:00 -0500
Time.new(2002, 10, 31) #=> 2002-10-31 00:00:00 -0500

You can pass a UTC offset:

Time.new(2002, 10, 31, 2, 2, 2, "+02:00") #=> 2002-10-31 02:02:02 +0200

Or a timezone object:

zone = timezone("Europe/Athens")      # Eastern European Time, UTC+2
Time.new(2002, 10, 31, 2, 2, 2, zone) #=> 2002-10-31 02:02:02 +0200

You can also use Time.local and Time.utc to infer local and UTC timezones instead of using the current system setting.

You can also create a new time using Time.at which takes the number of seconds (with subsecond) since the Unix Epoch.

Time.at(628232400) #=> 1989-11-28 00:00:00 -0500

Working with an Instance of Time

Once you have an instance of Time there is a multitude of things you can do with it. Below are some examples. For all of the following examples, we will work on the assumption that you have done the following:

t = Time.new(1993, 02, 24, 12, 0, 0, "+09:00")

Was that a monday?

t.monday? #=> false

What year was that again?

t.year #=> 1993

Was it daylight savings at the time?

t.dst? #=> false

What’s the day a year later?

t + (60*60*24*365) #=> 1994-02-24 12:00:00 +0900

How many seconds was that since the Unix Epoch?

t.to_i #=> 730522800

You can also do standard functions like compare two times.

t1 = Time.new(2010)
t2 = Time.new(2011)

t1 == t2 #=> false
t1 == t1 #=> true
t1 <  t2 #=> true
t1 >  t2 #=> false

Time.new(2010,10,31).between?(t1, t2) #=> true

What’s Here

First, what’s elsewhere. Class Time:

Here, class Time provides methods that are useful for:

Methods for Creating

Methods for Fetching

Methods for Querying

Methods for Comparing

Methods for Converting

Methods for Rounding

For the forms of argument zone, see Timezone Specifiers.

Timezone Specifiers

Certain Time methods accept arguments that specify timezones:

The value given with any of these must be one of the following (each detailed below):

Hours/Minutes Offsets

The zone value may be a string offset from UTC in the form '+HH:MM' or '-HH:MM', where:

Examples:

t = Time.utc(2000, 1, 1, 20, 15, 1) # => 2000-01-01 20:15:01 UTC
Time.at(t, in: '-23:59')            # => 1999-12-31 20:16:01 -2359
Time.at(t, in: '+23:59')            # => 2000-01-02 20:14:01 +2359

Single-Letter Offsets

The zone value may be a letter in the range 'A'..'I' or 'K'..'Z'; see List of military time zones:

t = Time.utc(2000, 1, 1, 20, 15, 1) # => 2000-01-01 20:15:01 UTC
Time.at(t, in: 'A')                 # => 2000-01-01 21:15:01 +0100
Time.at(t, in: 'I')                 # => 2000-01-02 05:15:01 +0900
Time.at(t, in: 'K')                 # => 2000-01-02 06:15:01 +1000
Time.at(t, in: 'Y')                 # => 2000-01-01 08:15:01 -1200
Time.at(t, in: 'Z')                 # => 2000-01-01 20:15:01 UTC

Integer Offsets

The zone value may be an integer number of seconds in the range -86399..86399:

t = Time.utc(2000, 1, 1, 20, 15, 1) # => 2000-01-01 20:15:01 UTC
Time.at(t, in: -86399)              # => 1999-12-31 20:15:02 -235959
Time.at(t, in: 86399)               # => 2000-01-02 20:15:00 +235959

Timezone Objects

The zone value may be an object responding to certain timezone methods, an instance of Timezone and TZInfo for example.

The timezone methods are:

A custom timezone class may have these instance methods, which will be called if defined:

Time-Like Objects

A Time-like object is a container object capable of interfacing with timezone libraries for timezone conversion.

The argument to the timezone conversion methods above will have attributes similar to Time, except that timezone related attributes are meaningless.

The objects returned by local_to_utc and utc_to_local methods of the timezone object may be of the same class as their arguments, of arbitrary object classes, or of class Integer.

For a returned class other than Integer, the class must have the following methods:

For a returned Integer, its components, decomposed in UTC, are interpreted as times in the specified timezone.

Timezone Names

If the class (the receiver of class methods, or the class of the receiver of instance methods) has find_timezone singleton method, this method is called to achieve the corresponding timezone object from a timezone name.

For example, using Timezone:

class TimeWithTimezone < Time
  require 'timezone'
  def self.find_timezone(z) = Timezone[z]
end

TimeWithTimezone.now(in: "America/New_York")        #=> 2023-12-25 00:00:00 -0500
TimeWithTimezone.new("2023-12-25 America/New_York") #=> 2023-12-25 00:00:00 -0500

Or, using TZInfo:

class TimeWithTZInfo < Time
  require 'tzinfo'
  def self.find_timezone(z) = TZInfo::Timezone.get(z)
end

TimeWithTZInfo.now(in: "America/New_York")          #=> 2023-12-25 00:00:00 -0500
TimeWithTZInfo.new("2023-12-25 America/New_York")   #=> 2023-12-25 00:00:00 -0500

You can define this method per subclasses, or on the toplevel Time class.

IO

An instance of class IO (commonly called a stream) represents an input/output stream in the underlying operating system. Class IO is the basis for input and output in Ruby.

Class File is the only class in the Ruby core that is a subclass of IO. Some classes in the Ruby standard library are also subclasses of IO; these include TCPSocket and UDPSocket.

The global constant ARGF (also accessible as $<) provides an IO-like stream that allows access to all file paths found in ARGV (or found in STDIN if ARGV is empty). ARGF is not itself a subclass of IO.

Class StringIO provides an IO-like stream that handles a String. StringIO is not itself a subclass of IO.

Important objects based on IO include:

An instance of IO may be created using:

Like a File stream, an IO stream has:

And like other IO streams, it has:

Extension io/console

Extension io/console provides numerous methods for interacting with the console; requiring it adds numerous methods to class IO.

Example Files

Many examples here use these variables:

# English text with newlines.
text = <<~EOT
  First line
  Second line

  Fourth line
  Fifth line
EOT

# Russian text.
russian = "\u{442 435 441 442}" # => "тест"

# Binary data.
data = "\u9990\u9991\u9992\u9993\u9994"

# Text file.
File.write('t.txt', text)

# File with Russian text.
File.write('t.rus', russian)

# File with binary data.
f = File.new('t.dat', 'wb:UTF-16')
f.write(data)
f.close

Open Options

A number of IO methods accept optional keyword arguments that determine how a new stream is to be opened:

Also available are the options offered in String#encode, which may control conversion between external and internal encoding.

Basic IO

You can perform basic stream IO with these methods, which typically operate on multi-byte strings:

Position

An IO stream has a nonnegative integer position, which is the byte offset at which the next read or write is to occur. A new stream has position zero (and line number zero); method rewind resets the position (and line number) to zero.

These methods discard buffers and the Encoding::Converter instances used for that IO.

The relevant methods:

Open and Closed Streams

A new IO stream may be open for reading, open for writing, or both.

A stream is automatically closed when claimed by the garbage collector.

Attempted reading or writing on a closed stream raises an exception.

The relevant methods:

End-of-Stream

You can query whether a stream is positioned at its end:

You can reposition to end-of-stream by using method IO#seek:

f = File.new('t.txt')
f.eof? # => false
f.seek(0, :END)
f.eof? # => true
f.close

Or by reading all stream content (which is slower than using IO#seek):

f.rewind
f.eof? # => false
f.read # => "First line\nSecond line\n\nFourth line\nFifth line\n"
f.eof? # => true

Line IO

Class IO supports line-oriented input and output

Line Input

Class IO supports line-oriented input for files and IO streams

File Line Input

You can read lines from a file using these methods:

For each of these methods:

Stream Line Input

You can read lines from an IO stream using these methods:

For each of these methods:

Line Separator

Each of the line input methods uses a line separator: the string that determines what is considered a line; it is sometimes called the input record separator.

The default line separator is taken from global variable $/, whose initial value is "\n".

Generally, the line to be read next is all data from the current position to the next line separator (but see Special Line Separator Values):

f = File.new('t.txt')
# Method gets with no sep argument returns the next line, according to $/.
f.gets # => "First line\n"
f.gets # => "Second line\n"
f.gets # => "\n"
f.gets # => "Fourth line\n"
f.gets # => "Fifth line\n"
f.close

You can use a different line separator by passing argument sep:

f = File.new('t.txt')
f.gets('l')   # => "First l"
f.gets('li')  # => "ine\nSecond li"
f.gets('lin') # => "ne\n\nFourth lin"
f.gets        # => "e\n"
f.close

Or by setting global variable $/:

f = File.new('t.txt')
$/ = 'l'
f.gets # => "First l"
f.gets # => "ine\nSecond l"
f.gets # => "ine\n\nFourth l"
f.close
Special Line Separator Values

Each of the line input methods accepts two special values for parameter sep:

Line Limit

Each of the line input methods uses an integer line limit, which restricts the number of bytes that may be returned. (A multi-byte character will not be split, and so a returned line may be slightly longer than the limit).

The default limit value is -1; any negative limit value means that there is no limit.

If there is no limit, the line is determined only by sep.

# Text with 1-byte characters.
File.open('t.txt') {|f| f.gets(1) }  # => "F"
File.open('t.txt') {|f| f.gets(2) }  # => "Fi"
File.open('t.txt') {|f| f.gets(3) }  # => "Fir"
File.open('t.txt') {|f| f.gets(4) }  # => "Firs"
# No more than one line.
File.open('t.txt') {|f| f.gets(10) } # => "First line"
File.open('t.txt') {|f| f.gets(11) } # => "First line\n"
File.open('t.txt') {|f| f.gets(12) } # => "First line\n"

# Text with 2-byte characters, which will not be split.
File.open('t.rus') {|f| f.gets(1).size } # => 1
File.open('t.rus') {|f| f.gets(2).size } # => 1
File.open('t.rus') {|f| f.gets(3).size } # => 2
File.open('t.rus') {|f| f.gets(4).size } # => 2
Line Separator and Line Limit

With arguments sep and limit given, combines the two behaviors:

Example:

File.open('t.txt') {|f| f.gets('li', 20) } # => "First li"
File.open('t.txt') {|f| f.gets('li', 2) }  # => "Fi"
Line Number

A readable IO stream has a non-negative integer line number:

Unless modified by a call to method IO#lineno=, the line number is the number of lines read by certain line-oriented methods, according to the effective line separator:

A new stream is initially has line number zero (and position zero); method rewind resets the line number (and position) to zero:

f = File.new('t.txt')
f.lineno # => 0
f.gets   # => "First line\n"
f.lineno # => 1
f.rewind
f.lineno # => 0
f.close

Reading lines from a stream usually changes its line number:

f = File.new('t.txt', 'r')
f.lineno   # => 0
f.readline # => "This is line one.\n"
f.lineno   # => 1
f.readline # => "This is the second line.\n"
f.lineno   # => 2
f.readline # => "Here's the third line.\n"
f.lineno   # => 3
f.eof?     # => true
f.close

Iterating over lines in a stream usually changes its line number:

File.open('t.txt') do |f|
  f.each_line do |line|
    p "position=#{f.pos} eof?=#{f.eof?} lineno=#{f.lineno}"
  end
end

Output:

"position=11 eof?=false lineno=1"
"position=23 eof?=false lineno=2"
"position=24 eof?=false lineno=3"
"position=36 eof?=false lineno=4"
"position=47 eof?=true lineno=5"

Unlike the stream’s position, the line number does not affect where the next read or write will occur:

f = File.new('t.txt')
f.lineno = 1000
f.lineno # => 1000
f.gets   # => "First line\n"
f.lineno # => 1001
f.close

Associated with the line number is the global variable $.:

Line Output

You can write to an IO stream line-by-line using this method:

Character IO

You can process an IO stream character-by-character using these methods:

Byte IO

You can process an IO stream byte-by-byte using these methods:

Codepoint IO

You can process an IO stream codepoint-by-codepoint:

What’s Here

First, what’s elsewhere. Class IO:

Here, class IO provides methods that are useful for:

Creating

Reading

Writing

Positioning

Iterating

Settings

Querying

Buffering

Low-Level Access

Other

No documentation available

Set

This library provides the Set class, which implements a collection of unordered values with no duplicates. It is a hybrid of Array’s intuitive inter-operation facilities and Hash’s fast lookup.

The method to_set is added to Enumerable for convenience.

Set is easy to use with Enumerable objects (implementing each). Most of the initializer methods and binary operators accept generic Enumerable objects besides sets and arrays. An Enumerable object can be converted to Set using the to_set method.

Set uses Hash as storage, so you must note the following points:

Comparison

The comparison operators <, >, <=, and >= are implemented as shorthand for the {proper_,}{subset?,superset?} methods. The <=> operator reflects this order, or return nil for sets that both have distinct elements ({x, y} vs. {x, z} for example).

Example

require 'set'
s1 = Set[1, 2]                        #=> #<Set: {1, 2}>
s2 = [1, 2].to_set                    #=> #<Set: {1, 2}>
s1 == s2                              #=> true
s1.add("foo")                         #=> #<Set: {1, 2, "foo"}>
s1.merge([2, 6])                      #=> #<Set: {1, 2, "foo", 6}>
s1.subset?(s2)                        #=> false
s2.subset?(s1)                        #=> true

Contact

What’s Here

First, what’s elsewhere. Class Set:

In particular, class Set does not have many methods of its own for fetching or for iterating. Instead, it relies on those in Enumerable.

Here, class Set provides methods that are useful for:

Methods for Creating a Set

Methods for Set Operations

Methods for Comparing

Methods for Querying

Methods for Assigning

Methods for Deleting

Methods for Converting

Methods for Iterating

Other Methods

Use the Monitor class when you want to have a lock object for blocks with mutual exclusion.

require 'monitor'

lock = Monitor.new
lock.synchronize do
  # exclusive access
end

Pathname represents the name of a file or directory on the filesystem, but not the file itself.

The pathname depends on the Operating System: Unix, Windows, etc. This library works with pathnames of local OS, however non-Unix pathnames are supported experimentally.

A Pathname can be relative or absolute. It’s not until you try to reference the file that it even matters whether the file exists or not.

Pathname is immutable. It has no method for destructive update.

The goal of this class is to manipulate file path information in a neater way than standard Ruby provides. The examples below demonstrate the difference.

All functionality from File, FileTest, and some from Dir and FileUtils is included, in an unsurprising way. It is essentially a facade for all of these, and more.

Examples

Example 1: Using Pathname

require 'pathname'
pn = Pathname.new("/usr/bin/ruby")
size = pn.size              # 27662
isdir = pn.directory?       # false
dir  = pn.dirname           # Pathname:/usr/bin
base = pn.basename          # Pathname:ruby
dir, base = pn.split        # [Pathname:/usr/bin, Pathname:ruby]
data = pn.read
pn.open { |f| _ }
pn.each_line { |line| _ }

Example 2: Using standard Ruby

pn = "/usr/bin/ruby"
size = File.size(pn)        # 27662
isdir = File.directory?(pn) # false
dir  = File.dirname(pn)     # "/usr/bin"
base = File.basename(pn)    # "ruby"
dir, base = File.split(pn)  # ["/usr/bin", "ruby"]
data = File.read(pn)
File.open(pn) { |f| _ }
File.foreach(pn) { |line| _ }

Example 3: Special features

p1 = Pathname.new("/usr/lib")   # Pathname:/usr/lib
p2 = p1 + "ruby/1.8"            # Pathname:/usr/lib/ruby/1.8
p3 = p1.parent                  # Pathname:/usr
p4 = p2.relative_path_from(p3)  # Pathname:lib/ruby/1.8
pwd = Pathname.pwd              # Pathname:/home/gavin
pwd.absolute?                   # true
p5 = Pathname.new "."           # Pathname:.
p5 = p5 + "music/../articles"   # Pathname:music/../articles
p5.cleanpath                    # Pathname:articles
p5.realpath                     # Pathname:/home/gavin/articles
p5.children                     # [Pathname:/home/gavin/articles/linux, ...]

Breakdown of functionality

Core methods

These methods are effectively manipulating a String, because that’s all a path is. None of these access the file system except for mountpoint?, children, each_child, realdirpath and realpath.

File status predicate methods

These methods are a facade for FileTest:

File property and manipulation methods

These methods are a facade for File:

Directory methods

These methods are a facade for Dir:

IO

These methods are a facade for IO:

Utilities

These methods are a mixture of Find, FileUtils, and others:

Method documentation

As the above section shows, most of the methods in Pathname are facades. The documentation for these methods generally just says, for instance, “See FileTest.writable?”, as you should be familiar with the original method anyway, and its documentation (e.g. through ri) will contain more information. In some cases, a brief description will follow.

PTY

Creates and manages pseudo terminals (PTYs). See also en.wikipedia.org/wiki/Pseudo_terminal

PTY allows you to allocate new terminals using ::open or ::spawn a new terminal with a specific command.

Example

In this example we will change the buffering type in the factor command, assuming that factor uses stdio for stdout buffering.

If IO.pipe is used instead of PTY.open, this code deadlocks because factor’s stdout is fully buffered.

# start by requiring the standard library PTY
require 'pty'

master, slave = PTY.open
read, write = IO.pipe
pid = spawn("factor", :in=>read, :out=>slave)
read.close     # we dont need the read
slave.close    # or the slave

# pipe "42" to the factor command
write.puts "42"
# output the response from factor
p master.gets #=> "42: 2 3 7\n"

# pipe "144" to factor and print out the response
write.puts "144"
p master.gets #=> "144: 2 2 2 2 3 3\n"
write.close # close the pipe

# The result of read operation when pty slave is closed is platform
# dependent.
ret = begin
        master.gets     # FreeBSD returns nil.
      rescue Errno::EIO # GNU/Linux raises EIO.
        nil
      end
p ret #=> nil

License

© Copyright 1998 by Akinori Ito.

This software may be redistributed freely for this purpose, in full or in part, provided that this entire copyright notice is included on any copies of this software and applications and derivations thereof.

This software is provided on an “as is” basis, without warranty of any kind, either expressed or implied, as to any matter including, but not limited to warranty of fitness of purpose, or merchantability, or results obtained from use of this software.

Ripper is a Ruby script parser.

You can get information from the parser with event-based style. Information such as abstract syntax trees or simple lexical analysis of the Ruby program.

Usage

Ripper provides an easy interface for parsing your program into a symbolic expression tree (or S-expression).

Understanding the output of the parser may come as a challenge, it’s recommended you use PP to format the output for legibility.

require 'ripper'
require 'pp'

pp Ripper.sexp('def hello(world) "Hello, #{world}!"; end')
  #=> [:program,
       [[:def,
         [:@ident, "hello", [1, 4]],
         [:paren,
          [:params, [[:@ident, "world", [1, 10]]], nil, nil, nil, nil, nil, nil]],
         [:bodystmt,
          [[:string_literal,
            [:string_content,
             [:@tstring_content, "Hello, ", [1, 18]],
             [:string_embexpr, [[:var_ref, [:@ident, "world", [1, 27]]]]],
             [:@tstring_content, "!", [1, 33]]]]],
          nil,
          nil,
          nil]]]]

You can see in the example above, the expression starts with :program.

From here, a method definition at :def, followed by the method’s identifier :@ident. After the method’s identifier comes the parentheses :paren and the method parameters under :params.

Next is the method body, starting at :bodystmt (stmt meaning statement), which contains the full definition of the method.

In our case, we’re simply returning a String, so next we have the :string_literal expression.

Within our :string_literal you’ll notice two @tstring_content, this is the literal part for Hello, and !. Between the two @tstring_content statements is a :string_embexpr, where embexpr is an embedded expression. Our expression consists of a local variable, or var_ref, with the identifier (@ident) of world.

Resources

Requirements

License

Ruby License.

SocketError is the error class for socket.

IO streams for strings, with access similar to IO; see IO.

About the Examples

Examples on this page assume that StringIO has been required:

require 'stringio'
No documentation available

Raised by some IO operations when reaching the end of file. Many IO methods exist in two forms,

one that returns nil when the end of file is reached, the other raises EOFError.

EOFError is a subclass of IOError.

file = File.open("/etc/hosts")
file.read
file.gets     #=> nil
file.readline #=> EOFError: end of file reached
file.close

ARGF and ARGV

The ARGF object works with the array at global variable ARGV to make $stdin and file streams available in the Ruby program:

Reading

ARGF may read from source streams, which at any particular time are determined by the content of ARGV.

Simplest Case

When the very first ARGF read occurs with an empty ARGV ([]), the source is $stdin:

About the Examples

Many examples here assume the existence of files foo.txt and bar.txt:

$ cat foo.txt
Foo 0
Foo 1
$ cat bar.txt
Bar 0
Bar 1
Bar 2
Bar 3

Sources in ARGV

For any ARGF read except the simplest case (that is, except for the very first ARGF read with an empty ARGV), the sources are found in ARGV.

ARGF assumes that each element in array ARGV is a potential source, and is one of:

Each element that is not one of these should be removed from ARGV before ARGF accesses that source.

In the following example:

Example:

ARGF’s stream access considers the elements of ARGV, left to right:

Because the value at ARGV is an ordinary array, you can manipulate it to control which sources ARGF considers:

Each element in ARGV is removed when its corresponding source is accessed; when all sources have been accessed, the array is empty:

Filepaths in ARGV

The ARGV array may contain filepaths the specify sources for ARGF reading.

This program prints what it reads from files at the paths specified on the command line:

Specifying $stdin in ARGV

To specify stream $stdin in ARGV, us the character '-':

When no character '-' is given, stream $stdin is ignored (exception: see Specifying $stdin in ARGV):

Mixtures and Repetitions in ARGV

For an ARGF reader, ARGV may contain any mixture of filepaths and character '-', including repetitions.

Modifications to ARGV

The running Ruby program may make any modifications to the ARGV array; the current value of ARGV affects ARGF reading.

Empty ARGV

For an empty ARGV, an ARGF read method either returns nil or raises an exception, depending on the specific method.

More Read Methods

As seen above, method ARGF#read reads the content of all sources into a single string. Other ARGF methods provide other ways to access that content; these include:

About Enumerable

ARGF includes module Enumerable. Virtually all methods in Enumerable call method #each in the including class.

Note well: In ARGF, method each returns data from the sources, not from ARGV; therefore, for example, ARGF#entries returns an array of lines from the sources, not an array of the strings from ARGV:

Writing

If inplace mode is in effect, ARGF may write to target streams, which at any particular time are determined by the content of ARGV.

Methods about inplace mode:

Methods for writing:

ERB

ERBRuby Templating

Introduction

ERB provides an easy to use but powerful templating system for Ruby. Using ERB, actual Ruby code can be added to any plain text document for the purposes of generating document information details and/or flow control.

A very simple example is this:

require 'erb'

x = 42
template = ERB.new <<-EOF
  The value of x is: <%= x %>
EOF
puts template.result(binding)

Prints: The value of x is: 42

More complex examples are given below.

Recognized Tags

ERB recognizes certain tags in the provided template and converts them based on the rules below:

<% Ruby code -- inline with output %>
<%= Ruby expression -- replace with result %>
<%# comment -- ignored -- useful in testing %> (`<% #` doesn't work. Don't use Ruby comments.)
% a line of Ruby code -- treated as <% line %> (optional -- see ERB.new)
%% replaced with % if first thing on a line and % processing is used
<%% or %%> -- replace with <% or %> respectively

All other text is passed through ERB filtering unchanged.

Options

There are several settings you can change when you use ERB:

See the ERB.new and ERB#result methods for more detail.

Character encodings

ERB (or Ruby code generated by ERB) returns a string in the same character encoding as the input string. When the input string has a magic comment, however, it returns a string in the encoding specified by the magic comment.

# -*- coding: utf-8 -*-
require 'erb'

template = ERB.new <<EOF
<%#-*- coding: Big5 -*-%>
  \_\_ENCODING\_\_ is <%= \_\_ENCODING\_\_ %>.
EOF
puts template.result

Prints: _ENCODING_ is Big5.

Examples

Plain Text

ERB is useful for any generic templating situation. Note that in this example, we use the convenient “% at start of line” tag, and we quote the template literally with %q{...} to avoid trouble with the backslash.

require "erb"

# Create template.
template = %q{
  From:  James Edward Gray II <james@grayproductions.net>
  To:  <%= to %>
  Subject:  Addressing Needs

  <%= to[/\w+/] %>:

  Just wanted to send a quick note assuring that your needs are being
  addressed.

  I want you to know that my team will keep working on the issues,
  especially:

  <%# ignore numerous minor requests -- focus on priorities %>
  % priorities.each do |priority|
    * <%= priority %>
  % end

  Thanks for your patience.

  James Edward Gray II
}.gsub(/^  /, '')

message = ERB.new(template, trim_mode: "%<>")

# Set up template data.
to = "Community Spokesman <spokesman@ruby_community.org>"
priorities = [ "Run Ruby Quiz",
               "Document Modules",
               "Answer Questions on Ruby Talk" ]

# Produce result.
email = message.result
puts email

Generates:

From:  James Edward Gray II <james@grayproductions.net>
To:  Community Spokesman <spokesman@ruby_community.org>
Subject:  Addressing Needs

Community:

Just wanted to send a quick note assuring that your needs are being addressed.

I want you to know that my team will keep working on the issues, especially:

    * Run Ruby Quiz
    * Document Modules
    * Answer Questions on Ruby Talk

Thanks for your patience.

James Edward Gray II

Ruby in HTML

ERB is often used in .rhtml files (HTML with embedded Ruby). Notice the need in this example to provide a special binding when the template is run, so that the instance variables in the Product object can be resolved.

require "erb"

# Build template data class.
class Product
  def initialize( code, name, desc, cost )
    @code = code
    @name = name
    @desc = desc
    @cost = cost

    @features = [ ]
  end

  def add_feature( feature )
    @features << feature
  end

  # Support templating of member data.
  def get_binding
    binding
  end

  # ...
end

# Create template.
template = %{
  <html>
    <head><title>Ruby Toys -- <%= @name %></title></head>
    <body>

      <h1><%= @name %> (<%= @code %>)</h1>
      <p><%= @desc %></p>

      <ul>
        <% @features.each do |f| %>
          <li><b><%= f %></b></li>
        <% end %>
      </ul>

      <p>
        <% if @cost < 10 %>
          <b>Only <%= @cost %>!!!</b>
        <% else %>
           Call for a price, today!
        <% end %>
      </p>

    </body>
  </html>
}.gsub(/^  /, '')

rhtml = ERB.new(template)

# Set up template data.
toy = Product.new( "TZ-1002",
                   "Rubysapien",
                   "Geek's Best Friend!  Responds to Ruby commands...",
                   999.95 )
toy.add_feature("Listens for verbal commands in the Ruby language!")
toy.add_feature("Ignores Perl, Java, and all C variants.")
toy.add_feature("Karate-Chop Action!!!")
toy.add_feature("Matz signature on left leg.")
toy.add_feature("Gem studded eyes... Rubies, of course!")

# Produce result.
rhtml.run(toy.get_binding)

Generates (some blank lines removed):

<html>
  <head><title>Ruby Toys -- Rubysapien</title></head>
  <body>

    <h1>Rubysapien (TZ-1002)</h1>
    <p>Geek's Best Friend!  Responds to Ruby commands...</p>

    <ul>
        <li><b>Listens for verbal commands in the Ruby language!</b></li>
        <li><b>Ignores Perl, Java, and all C variants.</b></li>
        <li><b>Karate-Chop Action!!!</b></li>
        <li><b>Matz signature on left leg.</b></li>
        <li><b>Gem studded eyes... Rubies, of course!</b></li>
    </ul>

    <p>
         Call for a price, today!
    </p>

  </body>
</html>

Notes

There are a variety of templating solutions available in various Ruby projects. For example, RDoc, distributed with Ruby, uses its own template engine, which can be reused elsewhere.

Other popular engines could be found in the corresponding Category of The Ruby Toolbox.

IPAddr provides a set of methods to manipulate an IP address. Both IPv4 and IPv6 are supported.

Example

require 'ipaddr'

ipaddr1 = IPAddr.new "3ffe:505:2::1"

p ipaddr1                   #=> #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0001/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>

p ipaddr1.to_s              #=> "3ffe:505:2::1"

ipaddr2 = ipaddr1.mask(48)  #=> #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0000/ffff:ffff:ffff:0000:0000:0000:0000:0000>

p ipaddr2.to_s              #=> "3ffe:505:2::"

ipaddr3 = IPAddr.new "192.168.2.0/24"

p ipaddr3                   #=> #<IPAddr: IPv4:192.168.2.0/255.255.255.0>

Raised when attempting to convert special float values (in particular Infinity or NaN) to numerical classes which don’t support them.

Float::INFINITY.to_r   #=> FloatDomainError: Infinity

The global value false is the only instance of class FalseClass and represents a logically false value in boolean expressions. The class provides operators allowing false to participate correctly in logical expressions.

Search took: 30ms  ·  Total Results: 3731