Returns the remainder after dividing self
by other
.
Of the Core and Standard Library classes, only Float
and Rational
use this implementation.
Examples:
11.0.remainder(4) # => 3.0 11.0.remainder(-4) # => 3.0 -11.0.remainder(4) # => -3.0 -11.0.remainder(-4) # => -3.0 12.0.remainder(4) # => 0.0 12.0.remainder(-4) # => 0.0 -12.0.remainder(4) # => -0.0 -12.0.remainder(-4) # => -0.0 13.0.remainder(4.0) # => 1.0 13.0.remainder(Rational(4, 1)) # => 1.0 Rational(13, 1).remainder(4) # => (1/1) Rational(13, 1).remainder(-4) # => (1/1) Rational(-13, 1).remainder(4) # => (-1/1) Rational(-13, 1).remainder(-4) # => (-1/1)
Returns self
truncated (toward zero) to a precision of digits
decimal digits.
Numeric implements this by converting self
to a Float
and invoking Float#truncate
.
Generates a sequence of numbers; with a block given, traverses the sequence. Of the Core and Standard Library classes, Integer, Float, and Rational use this implementation. A quick example: squares = [] 1.step(by: 2, to: 10) {|i| squares.push(i*i) } squares # => [1, 9, 25, 49, 81] The generated sequence: - Begins with +self+. - Continues at intervals of +step+ (which may not be zero). - Ends with the last number that is within or equal to +limit+; that is, less than or equal to +limit+ if +step+ is positive, greater than or equal to +limit+ if +step+ is negative. If +limit+ is not given, the sequence is of infinite length. If a block is given, calls the block with each number in the sequence; returns +self+. If no block is given, returns an Enumerator::ArithmeticSequence. <b>Keyword Arguments</b> With keyword arguments +by+ and +to+, their values (or defaults) determine the step and limit: # Both keywords given. squares = [] 4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4 squares # => [16, 36, 64, 100] cubes = [] 3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3 cubes # => [27.0, 3.375, 0.0, -3.375, -27.0] squares = [] 1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) } squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0] squares = [] Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) } squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0] # Only keyword to given. squares = [] 4.step(to: 10) {|i| squares.push(i*i) } # => 4 squares # => [16, 25, 36, 49, 64, 81, 100] # Only by given. # Only keyword by given squares = [] 4.step(by:2) {|i| squares.push(i*i); break if i > 10 } squares # => [16, 36, 64, 100, 144] # No block given. e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3)) e.class # => Enumerator::ArithmeticSequence <b>Positional Arguments</b> With optional positional arguments +limit+ and +step+, their values (or defaults) determine the step and limit: squares = [] 4.step(10, 2) {|i| squares.push(i*i) } # => 4 squares # => [16, 36, 64, 100] squares = [] 4.step(10) {|i| squares.push(i*i) } squares # => [16, 25, 36, 49, 64, 81, 100] squares = [] 4.step {|i| squares.push(i*i); break if i > 10 } # => nil squares # => [16, 25, 36, 49, 64, 81, 100, 121]
Implementation Notes
If all the arguments are integers, the loop operates using an integer counter. If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed <i>floor(n + n*Float::EPSILON) + 1</i> times, where <i>n = (limit - self)/step</i>.
Returns true
if num
is a finite number, otherwise returns false
.
Returns zero.
Returns the denominator (always positive).
Returns 0 if the value is positive, pi otherwise.
Returns self
truncated (toward zero) to a precision of ndigits
decimal digits.
When ndigits
is positive, returns a float with ndigits
digits after the decimal point (as available):
f = 12345.6789 f.truncate(1) # => 12345.6 f.truncate(3) # => 12345.678 f = -12345.6789 f.truncate(1) # => -12345.6 f.truncate(3) # => -12345.678
When ndigits
is negative, returns an integer with at least ndigits.abs
trailing zeros:
f = 12345.6789 f.truncate(0) # => 12345 f.truncate(-3) # => 12000 f = -12345.6789 f.truncate(0) # => -12345 f.truncate(-3) # => -12000
Note that the limited precision of floating-point arithmetic may lead to surprising results:
(0.3 / 0.1).truncate #=> 2 (!)
Related: Float#round
.
Returns true
if self
is not Infinity
, -Infinity
, or NaN
, false
otherwise:
f = 2.0 # => 2.0 f.finite? # => true f = 1.0/0.0 # => Infinity f.finite? # => false f = -1.0/0.0 # => -Infinity f.finite? # => false f = 0.0/0.0 # => NaN f.finite? # => false
Returns a string containing a representation of self
; depending of the value of self
, the string representation may contain:
A fixed-point number.
A number in “scientific notation” (containing an exponent).
‘Infinity’.
‘-Infinity’.
‘NaN’ (indicating not-a-number).
3.14.to_s # => “3.14” (10.1**50).to_s # => “1.644631821843879e+50” (10.1**500).to_s # => “Infinity” (-10.1**500).to_s # => “-Infinity” (0.0/0.0).to_s # => “NaN”
Returns the denominator (always positive). The result is machine dependent.
See also Float#numerator
.
Returns a copy of the storage hash for the fiber. The method can only be called on the Fiber.current
.
Sets the storage hash for the fiber. This feature is experimental and may change in the future. The method can only be called on the Fiber.current
.
You should be careful about using this method as you may inadvertently clear important fiber-storage state. You should mostly prefer to assign specific keys in the storage using Fiber::[]=
.
You can also use Fiber.new(storage: nil)
to create a fiber with an empty storage.
Example:
while request = request_queue.pop # Reset the per-request state: Fiber.current.storage = nil handle_request(request) end
Returns the current execution stack of the fiber. start
, count
and end
allow to select only parts of the backtrace.
def level3 Fiber.yield end def level2 level3 end def level1 level2 end f = Fiber.new { level1 } # It is empty before the fiber started f.backtrace #=> [] f.resume f.backtrace #=> ["test.rb:2:in `yield'", "test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"] p f.backtrace(1) # start from the item 1 #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"] p f.backtrace(2, 2) # start from item 2, take 2 #=> ["test.rb:6:in `level2'", "test.rb:10:in `level1'"] p f.backtrace(1..3) # take items from 1 to 3 #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'"] f.resume # It is nil after the fiber is finished f.backtrace #=> nil
Transfer control to another fiber, resuming it from where it last stopped or starting it if it was not resumed before. The calling fiber will be suspended much like in a call to Fiber.yield
.
The fiber which receives the transfer call treats it much like a resume call. Arguments passed to transfer are treated like those passed to resume.
The two style of control passing to and from fiber (one is resume
and Fiber::yield
, another is transfer
to and from fiber) can’t be freely mixed.
If the Fiber’s lifecycle had started with transfer, it will never be able to yield or be resumed control passing, only finish or transfer back. (It still can resume other fibers that are allowed to be resumed.)
If the Fiber’s lifecycle had started with resume, it can yield or transfer to another Fiber
, but can receive control back only the way compatible with the way it was given away: if it had transferred, it only can be transferred back, and if it had yielded, it only can be resumed back. After that, it again can transfer or yield.
If those rules are broken FiberError
is raised.
For an individual Fiber
design, yield/resume is easier to use (the Fiber
just gives away control, it doesn’t need to think about who the control is given to), while transfer is more flexible for complex cases, allowing to build arbitrary graphs of Fibers dependent on each other.
Example:
manager = nil # For local var to be visible inside worker block # This fiber would be started with transfer # It can't yield, and can't be resumed worker = Fiber.new { |work| puts "Worker: starts" puts "Worker: Performed #{work.inspect}, transferring back" # Fiber.yield # this would raise FiberError: attempt to yield on a not resumed fiber # manager.resume # this would raise FiberError: attempt to resume a resumed fiber (double resume) manager.transfer(work.capitalize) } # This fiber would be started with resume # It can yield or transfer, and can be transferred # back or resumed manager = Fiber.new { puts "Manager: starts" puts "Manager: transferring 'something' to worker" result = worker.transfer('something') puts "Manager: worker returned #{result.inspect}" # worker.resume # this would raise FiberError: attempt to resume a transferring fiber Fiber.yield # this is OK, the fiber transferred from and to, now it can yield puts "Manager: finished" } puts "Starting the manager" manager.resume puts "Resuming the manager" # manager.transfer # this would raise FiberError: attempt to transfer to a yielding fiber manager.resume
produces
Starting the manager Manager: starts Manager: transferring 'something' to worker Worker: starts Worker: Performed "something", transferring back Manager: worker returned "Something" Resuming the manager Manager: finished
Return a string describing this Dir
object.
Repositions dir to the first entry.
d = Dir.new("testdir") d.read #=> "." d.rewind #=> #<Dir:0x401b3fb0> d.read #=> "."
Deletes the named directory. Raises a subclass of SystemCallError
if the directory isn’t empty.
Returns true
if the named file is a directory, false
otherwise.
Returns a File::Stat
object for the file at filepath
(see File::Stat
):
File.stat('t.txt').class # => File::Stat
Like File::stat
, but does not follow the last symbolic link; instead, returns a File::Stat
object for the link itself.
File.symlink('t.txt', 'symlink') File.stat('symlink').size # => 47 File.lstat('symlink').size # => 5
Creates a new name for an existing file using a hard link. Will not overwrite new_name if it already exists (raising a subclass of SystemCallError
). Not available on all platforms.
File.link("testfile", ".testfile") #=> 0 IO.readlines(".testfile")[0] #=> "This is line one\n"
Creates a symbolic link called new_name for the existing file old_name. Raises a NotImplemented exception on platforms that do not support symbolic links.
File.symlink("testfile", "link2test") #=> 0