Returns a string containing the place-value representation of self
in radix base
(in 2..36).
12345.to_s # => "12345" 12345.to_s(2) # => "11000000111001" 12345.to_s(8) # => "30071" 12345.to_s(10) # => "12345" 12345.to_s(16) # => "3039" 12345.to_s(36) # => "9ix" 78546939656932.to_s(36) # => "rubyrules"
Raises an exception if base
is out of range.
Integer#inspect
is an alias for Integer#to_s
.
Since int
is already an Integer
, this always returns true
.
Returns 1.
Returns a complex object which denotes the given rectangular form.
Complex.rectangular(1, 2) #=> (1+2i)
Returns the imaginary part.
Complex(7).imaginary #=> 0 Complex(9, -4).imaginary #=> -4
Returns the angle part of its polar form.
Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
Returns the denominator (lcm of both denominator - real and imag).
See numerator.
Returns the value as a string for inspection.
Complex(2).inspect #=> "(2+0i)" Complex('-8/6').inspect #=> "((-4/3)+0i)" Complex('1/2i').inspect #=> "(0+(1/2)*i)" Complex(0, Float::INFINITY).inspect #=> "(0+Infinity*i)" Complex(Float::NAN, Float::NAN).inspect #=> "(NaN+NaN*i)"
Returns true
if cmp
‘s real and imaginary parts are both finite numbers, otherwise returns false
.
Always returns the string “nil”.
Returns zero.
Returns 0 if the value is positive, pi otherwise.
Returns an array; [num, 0].
Returns the remainder after dividing self
by other
.
Of the Core and Standard Library classes, only Float
and Rational
use this implementation.
Examples:
11.0.remainder(4) # => 3.0 11.0.remainder(-4) # => 3.0 -11.0.remainder(4) # => -3.0 -11.0.remainder(-4) # => -3.0 12.0.remainder(4) # => 0.0 12.0.remainder(-4) # => 0.0 -12.0.remainder(4) # => -0.0 -12.0.remainder(-4) # => -0.0 13.0.remainder(4.0) # => 1.0 13.0.remainder(Rational(4, 1)) # => 1.0 Rational(13, 1).remainder(4) # => (1/1) Rational(13, 1).remainder(-4) # => (1/1) Rational(-13, 1).remainder(4) # => (-1/1) Rational(-13, 1).remainder(-4) # => (-1/1)
Returns self
truncated (toward zero) to a precision of digits
decimal digits.
Numeric implements this by converting self
to a Float
and invoking Float#truncate
.
Generates a sequence of numbers; with a block given, traverses the sequence. Of the Core and Standard Library classes, Integer, Float, and Rational use this implementation. A quick example: squares = [] 1.step(by: 2, to: 10) {|i| squares.push(i*i) } squares # => [1, 9, 25, 49, 81] The generated sequence: - Begins with +self+. - Continues at intervals of +step+ (which may not be zero). - Ends with the last number that is within or equal to +limit+; that is, less than or equal to +limit+ if +step+ is positive, greater than or equal to +limit+ if +step+ is negative. If +limit+ is not given, the sequence is of infinite length. If a block is given, calls the block with each number in the sequence; returns +self+. If no block is given, returns an Enumerator::ArithmeticSequence. <b>Keyword Arguments</b> With keyword arguments +by+ and +to+, their values (or defaults) determine the step and limit: # Both keywords given. squares = [] 4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4 squares # => [16, 36, 64, 100] cubes = [] 3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3 cubes # => [27.0, 3.375, 0.0, -3.375, -27.0] squares = [] 1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) } squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0] squares = [] Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) } squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0] # Only keyword to given. squares = [] 4.step(to: 10) {|i| squares.push(i*i) } # => 4 squares # => [16, 25, 36, 49, 64, 81, 100] # Only by given. # Only keyword by given squares = [] 4.step(by:2) {|i| squares.push(i*i); break if i > 10 } squares # => [16, 36, 64, 100, 144] # No block given. e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3)) e.class # => Enumerator::ArithmeticSequence <b>Positional Arguments</b> With optional positional arguments +limit+ and +step+, their values (or defaults) determine the step and limit: squares = [] 4.step(10, 2) {|i| squares.push(i*i) } # => 4 squares # => [16, 36, 64, 100] squares = [] 4.step(10) {|i| squares.push(i*i) } squares # => [16, 25, 36, 49, 64, 81, 100] squares = [] 4.step {|i| squares.push(i*i); break if i > 10 } # => nil squares # => [16, 25, 36, 49, 64, 81, 100, 121]
Implementation Notes
If all the arguments are integers, the loop operates using an integer counter. If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed <i>floor(n + n*Float::EPSILON) + 1</i> times, where <i>n = (limit - self)/step</i>.
Returns true
if num
is a finite number, otherwise returns false
.
Returns the denominator (always positive).
Returns 0 if the value is positive, pi otherwise.
Returns self
truncated (toward zero) to a precision of ndigits
decimal digits.
When ndigits
is positive, returns a float with ndigits
digits after the decimal point (as available):
f = 12345.6789 f.truncate(1) # => 12345.6 f.truncate(3) # => 12345.678 f = -12345.6789 f.truncate(1) # => -12345.6 f.truncate(3) # => -12345.678
When ndigits
is negative, returns an integer with at least ndigits.abs
trailing zeros:
f = 12345.6789 f.truncate(0) # => 12345 f.truncate(-3) # => 12000 f = -12345.6789 f.truncate(0) # => -12345 f.truncate(-3) # => -12000
Note that the limited precision of floating-point arithmetic may lead to surprising results:
(0.3 / 0.1).truncate #=> 2 (!)
Related: Float#round
.
Returns true
if self
is not Infinity
, -Infinity
, or Nan
, false
otherwise:
f = 2.0 # => 2.0 f.finite? # => true f = 1.0/0.0 # => Infinity f.finite? # => false f = -1.0/0.0 # => -Infinity f.finite? # => false f = 0.0/0.0 # => NaN f.finite? # => false
Returns a string containing a representation of self
; depending of the value of self
, the string representation may contain:
A fixed-point number.
A number in “scientific notation” (containing an exponent).
‘Infinity’.
‘-Infinity’.
‘NaN’ (indicating not-a-number).
3.14.to_s # => “3.14” (10.1**50).to_s # => “1.644631821843879e+50” (10.1**500).to_s # => “Infinity” (-10.1**500).to_s # => “-Infinity” (0.0/0.0).to_s # => “NaN”
Returns the denominator (always positive). The result is machine dependent.
See also Float#numerator
.