Results for: "String# "

A String object has an arbitrary sequence of bytes, typically representing text or binary data. A String object may be created using String::new or as literals.

String objects differ from Symbol objects in that Symbol objects are designed to be used as identifiers, instead of text or data.

You can create a String object explicitly with:

You can convert certain objects to Strings with:

Some String methods modify self. Typically, a method whose name ends with ! modifies self and returns self; often a similarly named method (without the !) returns a new string.

In general, if there exist both bang and non-bang version of method, the bang! mutates and the non-bang! does not. However, a method without a bang can also mutate, such as String#replace.

Substitution Methods

These methods perform substitutions:

Each of these methods takes:

The examples in this section mostly use methods String#sub and String#gsub; the principles illustrated apply to all four substitution methods.

Argument pattern

Argument pattern is commonly a regular expression:

s = 'hello'
s.sub(/[aeiou]/, '*')  # => "h*llo"
s.gsub(/[aeiou]/, '*') # => "h*ll*"
s.gsub(/[aeiou]/, '')  # => "hll"
s.sub(/ell/, 'al')     # => "halo"
s.gsub(/xyzzy/, '*')   # => "hello"
'THX1138'.gsub(/\d+/, '00') # => "THX00"

When pattern is a string, all its characters are treated as ordinary characters (not as regexp special characters):

'THX1138'.gsub('\d+', '00') # => "THX1138"

String replacement

If replacement is a string, that string will determine the replacing string that is to be substituted for the matched text.

Each of the examples above uses a simple string as the replacing string.

String replacement may contain back-references to the pattern’s captures:

See regexp.rdoc for details.

Note that within the string replacement, a character combination such as $& is treated as ordinary text, and not as a special match variable. However, you may refer to some special match variables using these combinations:

See regexp.rdoc for details.

Note that \\ is interpreted as an escape, i.e., a single backslash.

Note also that a string literal consumes backslashes. See String Literals for details about string literals.

A back-reference is typically preceded by an additional backslash. For example, if you want to write a back-reference \& in replacement with a double-quoted string literal, you need to write "..\\&..".

If you want to write a non-back-reference string \& in replacement, you need first to escape the backslash to prevent this method from interpreting it as a back-reference, and then you need to escape the backslashes again to prevent a string literal from consuming them: "..\\\\&..".

You may want to use the block form to avoid a lot of backslashes.

Hash replacement

If argument replacement is a hash, and pattern matches one of its keys, the replacing string is the value for that key:

h = {'foo' => 'bar', 'baz' => 'bat'}
'food'.sub('foo', h) # => "bard"

Note that a symbol key does not match:

h = {foo: 'bar', baz: 'bat'}
'food'.sub('foo', h) # => "d"

Block

In the block form, the current match string is passed to the block; the block’s return value becomes the replacing string:

 s = '@'
'1234'.gsub(/\d/) {|match| s.succ! } # => "ABCD"

Special match variables such as $1, $2, $`, $&, and $' are set appropriately.

What’s Here

First, what’s elsewhere. Class String:

Here, class String provides methods that are useful for:

Methods for Creating a String

Methods for a Frozen/Unfrozen String

Methods for Querying

Counts

Substrings

Encodings

Other

Methods for Comparing

Methods for Modifying a String

Each of these methods modifies self.

Insertion

Substitution

Casing

Encoding

Deletion

Methods for Converting to New String

Each of these methods returns a new String based on self, often just a modified copy of self.

Extension

Encoding

Substitution

Casing

Deletion

Duplication

Methods for Converting to Non-String

Each of these methods converts the contents of self to a non-String.

Characters, Bytes, and Clusters

Splitting

Matching

Numerics

Strings and Symbols

Methods for Iterating

Returns underlying String object, the subject of IO.

Returns the string being scanned.

Returns a frozen copy of the string passed in to match.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.string   #=> "THX1138."

Returns arg as a String.

First tries to call its to_str method, then its to_s method.

String(self)        #=> "main"
String(self.class)  #=> "Object"
String(123456)      #=> "123456"

Returns a copy of the receiver with leading and trailing whitespace removed.

Whitespace is defined as any of the following characters: null, horizontal tab, line feed, vertical tab, form feed, carriage return, space.

"    hello    ".strip   #=> "hello"
"\tgoodbye\r\n".strip   #=> "goodbye"
"\x00\t\n\v\f\r ".strip #=> ""
"hello".strip           #=> "hello"

Returns a copy of the receiver with leading whitespace removed. See also String#rstrip and String#strip.

Refer to String#strip for the definition of whitespace.

"  hello  ".lstrip   #=> "hello  "
"hello".lstrip       #=> "hello"

Returns a copy of the receiver with trailing whitespace removed. See also String#lstrip and String#strip.

Refer to String#strip for the definition of whitespace.

"  hello  ".rstrip   #=> "  hello"
"hello".rstrip       #=> "hello"

Removes leading and trailing whitespace from the receiver. Returns the altered receiver, or nil if there was no change.

Refer to String#strip for the definition of whitespace.

"  hello  ".strip!  #=> "hello"
"hello".strip!      #=> nil

Removes leading whitespace from the receiver. Returns the altered receiver, or nil if no change was made. See also String#rstrip! and String#strip!.

Refer to String#strip for the definition of whitespace.

"  hello  ".lstrip!  #=> "hello  "
"hello  ".lstrip!    #=> nil
"hello".lstrip!      #=> nil

Removes trailing whitespace from the receiver. Returns the altered receiver, or nil if no change was made. See also String#lstrip! and String#strip!.

Refer to String#strip for the definition of whitespace.

"  hello  ".rstrip!  #=> "  hello"
"  hello".rstrip!    #=> nil
"hello".rstrip!      #=> nil

Returns the Integer index of the last occurrence of the given substring, or nil if none found:

'foo'.rindex('f') # => 0
'foo'.rindex('o') # => 2
'foo'.rindex('oo') # => 1
'foo'.rindex('ooo') # => nil

Returns the Integer index of the last match for the given Regexp regexp, or nil if none found:

'foo'.rindex(/f/) # => 0
'foo'.rindex(/o/) # => 2
'foo'.rindex(/oo/) # => 1
'foo'.rindex(/ooo/) # => nil

The last match means starting at the possible last position, not the last of longest matches.

'foo'.rindex(/o+/) # => 2
$~ #=> #<MatchData "o">

To get the last longest match, needs to combine with negative lookbehind.

'foo'.rindex(/(?<!o)o+/) # => 1
$~ #=> #<MatchData "oo">

Or String#index with negative lookforward.

'foo'.index(/o+(?!.*o)/) # => 1
$~ #=> #<MatchData "oo">

Integer argument offset, if given and non-negative, specifies the maximum starting position in the

string to _end_ the search:

 'foo'.rindex('o', 0) # => nil
 'foo'.rindex('o', 1) # => 1
 'foo'.rindex('o', 2) # => 2
 'foo'.rindex('o', 3) # => 2

If offset is a negative Integer, the maximum starting position in the string to end the search is the sum of the string’s length and offset:

'foo'.rindex('o', -1) # => 2
'foo'.rindex('o', -2) # => 1
'foo'.rindex('o', -3) # => nil
'foo'.rindex('o', -4) # => nil

Related: String#index.

Returns the Encoding object that represents the encoding of obj.

Inserts the given other_string into self; returns self.

If the Integer index is positive, inserts other_string at offset index:

'foo'.insert(1, 'bar') # => "fbaroo"

If the Integer index is negative, counts backward from the end of self and inserts other_string at offset index+1 (that is, after self[index]):

'foo'.insert(-2, 'bar') # => "fobaro"

Returns the count of characters (not bytes) in self:

"\x80\u3042".length # => 2
"hello".length # => 5

String#size is an alias for String#length.

Related: String#bytesize.

Returns the Integer index of the first occurrence of the given substring, or nil if none found:

'foo'.index('f') # => 0
'foo'.index('o') # => 1
'foo'.index('oo') # => 1
'foo'.index('ooo') # => nil

Returns the Integer index of the first match for the given Regexp regexp, or nil if none found:

'foo'.index(/f/) # => 0
'foo'.index(/o/) # => 1
'foo'.index(/oo/) # => 1
'foo'.index(/ooo/) # => nil

Integer argument offset, if given, specifies the position in the string to begin the search:

'foo'.index('o', 1) # => 1
'foo'.index('o', 2) # => 2
'foo'.index('o', 3) # => nil

If offset is negative, counts backward from the end of self:

'foo'.index('o', -1) # => 2
'foo'.index('o', -2) # => 1
'foo'.index('o', -3) # => 1
'foo'.index('o', -4) # => nil

Related: String#rindex.

Returns a printable version of self, enclosed in double-quotes, and with special characters escaped:

s = "foo\tbar\tbaz\n"
# => "foo\tbar\tbaz\n"
s.inspect
# => "\"foo\\tbar\\tbaz\\n\""

Returns an array of lines in str split using the supplied record separator ($/ by default). This is a shorthand for str.each_line(separator, getline_args).to_a.

If chomp is true, separator will be removed from the end of each line.

"hello\nworld\n".lines              #=> ["hello\n", "world\n"]
"hello  world".lines(' ')           #=> ["hello ", " ", "world"]
"hello\nworld\n".lines(chomp: true) #=> ["hello", "world"]

If a block is given, which is a deprecated form, works the same as each_line.

Returns an array of the Integer ordinals of the characters in str. This is a shorthand for str.each_codepoint.to_a.

If a block is given, which is a deprecated form, works the same as each_codepoint.

Returns the Symbol corresponding to str, creating the symbol if it did not previously exist. See Symbol#id2name.

"Koala".intern         #=> :Koala
s = 'cat'.to_sym       #=> :cat
s == :cat              #=> true
s = '@cat'.to_sym      #=> :@cat
s == :@cat             #=> true

This can also be used to create symbols that cannot be represented using the :xxx notation.

'cat and dog'.to_sym   #=> :"cat and dog"

Returns true if self contains other_string, false otherwise:

s = 'foo'
s.include?('f')    # => true
s.include?('fo')   # => true
s.include?('food') # => false

If integer is greater than the length of str, returns a new String of length integer with str left justified and padded with padstr; otherwise, returns str.

"hello".ljust(4)            #=> "hello"
"hello".ljust(20)           #=> "hello               "
"hello".ljust(20, '1234')   #=> "hello123412341234123"

If integer is greater than the length of str, returns a new String of length integer with str right justified and padded with padstr; otherwise, returns str.

"hello".rjust(4)            #=> "hello"
"hello".rjust(20)           #=> "               hello"
"hello".rjust(20, '1234')   #=> "123412341234123hello"

Returns a copy of str with the characters in from_str replaced by the corresponding characters in to_str. If to_str is shorter than from_str, it is padded with its last character in order to maintain the correspondence.

"hello".tr('el', 'ip')      #=> "hippo"
"hello".tr('aeiou', '*')    #=> "h*ll*"
"hello".tr('aeiou', 'AA*')  #=> "hAll*"

Both strings may use the c1-c2 notation to denote ranges of characters, and from_str may start with a ^, which denotes all characters except those listed.

"hello".tr('a-y', 'b-z')    #=> "ifmmp"
"hello".tr('^aeiou', '*')   #=> "*e**o"

The backslash character \ can be used to escape ^ or - and is otherwise ignored unless it appears at the end of a range or the end of the from_str or to_str:

"hello^world".tr("\\^aeiou", "*") #=> "h*ll**w*rld"
"hello-world".tr("a\\-eo", "*")   #=> "h*ll**w*rld"

"hello\r\nworld".tr("\r", "")   #=> "hello\nworld"
"hello\r\nworld".tr("\\r", "")  #=> "hello\r\nwold"
"hello\r\nworld".tr("\\\r", "") #=> "hello\nworld"

"X['\\b']".tr("X\\", "")   #=> "['b']"
"X['\\b']".tr("X-\\]", "") #=> "'b'"

Translates str in place, using the same rules as String#tr. Returns str, or nil if no changes were made.

Search took: 12ms  ·  Total Results: 2635