Results for: "remove_const"

Extracts the certificate chain from the spec and calls verify to ensure the signatures and certificate chain is valid according to the policy..

No documentation available
No documentation available
No documentation available

Returns a new array containing only those elements from self that are not found in any of the given other_arrays; items are compared using eql?; order from self is preserved:

[0, 1, 1, 2, 1, 1, 3, 1, 1].difference([1]) # => [0, 2, 3]
[0, 1, 2, 3].difference([3, 0], [1, 3])     # => [2]
[0, 1, 2].difference([4])                   # => [0, 1, 2]
[0, 1, 2].difference                        # => [0, 1, 2]

Returns a copy of self if no arguments are given.

Related: Array#-; see also Methods for Combining.

Returns true if the count of elements in self is zero, false otherwise.

Related: see Methods for Querying.

With a block given, returns a new array whose elements are all those from self for which the block returns false or nil:

a = [:foo, 'bar', 2, 'bat']
a1 = a.reject {|element| element.to_s.start_with?('b') }
a1 # => [:foo, 2]

With no block given, returns a new Enumerator.

Related: Methods for Fetching.

With a block given, calls the block with each element of self; removes each element for which the block returns a truthy value.

Returns self if any elements removed:

a = [:foo, 'bar', 2, 'bat']
a.reject! {|element| element.to_s.start_with?('b') } # => [:foo, 2]

Returns nil if no elements removed.

With no block given, returns a new Enumerator.

Related: see Methods for Deleting.

Replaces the elements of self with the elements of other_array, which must be an array-convertible object; returns self:

a = ['a', 'b', 'c']   # => ["a", "b", "c"]
a.replace(['d', 'e']) # => ["d", "e"]

Related: see Methods for Assigning.

Freezes self (if not already frozen); returns self:

a = []
a.frozen? # => false
a.freeze
a.frozen? # => true

No further changes may be made to self; raises FrozenError if a change is attempted.

Related: Kernel#frozen?.

Prepends the given objects to self:

a = [:foo, 'bar', 2]
a.unshift(:bam, :bat) # => [:bam, :bat, :foo, "bar", 2]

Related: Array#shift; see also Methods for Assigning.

Returns the predecessor of self (equivalent to self - 1):

1.pred  #=> 0
-1.pred #=> -2

Related: Integer#succ (successor value).

Returns self modulo other as a real number.

For integer n and real number r, these expressions are equivalent:

n % r
n-r*(n/r).floor
n.divmod(r)[1]

See Numeric#divmod.

Examples:

10 % 2              # => 0
10 % 3              # => 1
10 % 4              # => 2

10 % -2             # => 0
10 % -3             # => -2
10 % -4             # => -2

10 % 3.0            # => 1.0
10 % Rational(3, 1) # => (1/1)

Returns a 2-element array [q, r], where

q = (self/other).floor    # Quotient
r = self % other          # Remainder

Examples:

11.divmod(4)              # => [2, 3]
11.divmod(-4)             # => [-3, -1]
-11.divmod(4)             # => [-3, 1]
-11.divmod(-4)            # => [2, -3]

12.divmod(4)              # => [3, 0]
12.divmod(-4)             # => [-3, 0]
-12.divmod(4)             # => [-3, 0]
-12.divmod(-4)            # => [3, 0]

13.divmod(4.0)            # => [3, 1.0]
13.divmod(Rational(4, 1)) # => [3, (1/1)]

Returns true if self is an even number, false otherwise.

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:

Complex.rect(3)             # => (3+0i)
Complex.rect(3, Math::PI)   # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)

Complex.rectangular is an alias for Complex.rect.

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:

Complex.rect(3)             # => (3+0i)
Complex.rect(3, Math::PI)   # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)

Complex.rectangular is an alias for Complex.rect.

Returns the real value for self:

Complex.rect(7).real     # => 7
Complex.rect(9, -4).real # => 9

If self was created with polar coordinates, the returned value is computed, and may be inexact:

Complex.polar(1, Math::PI/4).real # => 0.7071067811865476 # Square root of 2.

Returns the array [self.real, self.imag]:

Complex.rect(1, 2).rect # => [1, 2]

See Rectangular Coordinates.

If self was created with polar coordinates, the returned value is computed, and may be inexact:

Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]

Complex#rectangular is an alias for Complex#rect.

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:

Complex.rect(3)             # => (3+0i)
Complex.rect(3, Math::PI)   # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)

Complex.rectangular is an alias for Complex.rect.

Returns false; for compatibility with Numeric#real?.

Returns array [self, 0].

Returns array [self, 0].

Returns a 2-element array [q, r], where

q = (self/other).floor                  # Quotient
r = self % other                        # Remainder

Of the Core and Standard Library classes, only Rational uses this implementation.

Examples:

Rational(11, 1).divmod(4)               # => [2, (3/1)]
Rational(11, 1).divmod(-4)              # => [-3, (-1/1)]
Rational(-11, 1).divmod(4)              # => [-3, (1/1)]
Rational(-11, 1).divmod(-4)             # => [2, (-3/1)]

Rational(12, 1).divmod(4)               # => [3, (0/1)]
Rational(12, 1).divmod(-4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(-4)             # => [3, (0/1)]

Rational(13, 1).divmod(4.0)             # => [3, 1.0]
Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]

Returns self modulo other as a real number.

Of the Core and Standard Library classes, only Rational uses this implementation.

For Rational r and real number n, these expressions are equivalent:

r % n
r-n*(r/n).floor
r.divmod(n)[1]

See Numeric#divmod.

Examples:

r = Rational(1, 2)    # => (1/2)
r2 = Rational(2, 3)   # => (2/3)
r % r2                # => (1/2)
r % 2                 # => (1/2)
r % 2.0               # => 0.5

r = Rational(301,100) # => (301/100)
r2 = Rational(7,5)    # => (7/5)
r % r2                # => (21/100)
r % -r2               # => (-119/100)
(-r) % r2             # => (119/100)
(-r) %-r2             # => (-21/100)
Search took: 4ms  ·  Total Results: 3316