Visit a constant path that is part of a write node.
Foo::Bar += baz ^^^^^^^^^^^^^^^
Foo::Bar &&= baz ^^^^^^^^^^^^^^^^
Foo::Bar ||= baz ^^^^^^^^^^^^^^^^
Returns a new array containing each element in self
that is eql?
to at least one element in each of the given other_arrays
; duplicates are omitted:
[0, 0, 1, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1]
Each element must correctly implement method hash
.
Order from self
is preserved:
[0, 1, 2].intersection([2, 1, 0]) # => [0, 1, 2]
Returns a copy of self
if no arguments are given.
Related: see Methods for Combining.
Returns a 3-element array of substrings of self
.
Matches a pattern against self
, scanning from the beginning. The pattern is:
string_or_regexp
itself, if it is a Regexp
.
Regexp.quote(string_or_regexp)
, if string_or_regexp
is a string.
If the pattern is matched, returns pre-match, first-match, post-match:
'hello'.partition('l') # => ["he", "l", "lo"] 'hello'.partition('ll') # => ["he", "ll", "o"] 'hello'.partition('h') # => ["", "h", "ello"] 'hello'.partition('o') # => ["hell", "o", ""] 'hello'.partition(/l+/) #=> ["he", "ll", "o"] 'hello'.partition('') # => ["", "", "hello"] 'тест'.partition('т') # => ["", "т", "ест"] 'こんにちは'.partition('に') # => ["こん", "に", "ちは"]
If the pattern is not matched, returns a copy of self
and two empty strings:
'hello'.partition('x') # => ["hello", "", ""]
Related: String#rpartition
, String#split
.
Returns a 3-element array of substrings of self
.
Matches a pattern against self
, scanning backwards from the end. The pattern is:
string_or_regexp
itself, if it is a Regexp
.
Regexp.quote(string_or_regexp)
, if string_or_regexp
is a string.
If the pattern is matched, returns pre-match, last-match, post-match:
'hello'.rpartition('l') # => ["hel", "l", "o"] 'hello'.rpartition('ll') # => ["he", "ll", "o"] 'hello'.rpartition('h') # => ["", "h", "ello"] 'hello'.rpartition('o') # => ["hell", "o", ""] 'hello'.rpartition(/l+/) # => ["hel", "l", "o"] 'hello'.rpartition('') # => ["hello", "", ""] 'тест'.rpartition('т') # => ["тес", "т", ""] 'こんにちは'.rpartition('に') # => ["こん", "に", "ちは"]
If the pattern is not matched, returns two empty strings and a copy of self
:
'hello'.rpartition('x') # => ["", "", "hello"]
Related: String#partition
, String#split
.
Returns a new set containing elements common to the set and the given enumerable object.
Set[1, 3, 5] & Set[3, 2, 1] #=> #<Set: {3, 1}> Set['a', 'b', 'z'] & ['a', 'b', 'c'] #=> #<Set: {"a", "b"}>
With a block given, returns an array of two arrays:
The first having those elements for which the block returns a truthy value.
The other having all other elements.
Examples:
p = (1..4).partition {|i| i.even? } p # => [[2, 4], [1, 3]] p = ('a'..'d').partition {|c| c < 'c' } p # => [["a", "b"], ["c", "d"]] h = {foo: 0, bar: 1, baz: 2, bat: 3} p = h.partition {|key, value| key.start_with?('b') } p # => [[[:bar, 1], [:baz, 2], [:bat, 3]], [[:foo, 0]]] p = h.partition {|key, value| value < 2 } p # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]]]
With no block given, returns an Enumerator
.
Related: Enumerable#group_by
.
The standard configuration object for gems.
Use the given configuration object (which implements the ConfigFile
protocol) as the standard configuration object.
Returns the fractional part of the second in range (Rational(0, 1)…Rational(1, 1)):
DateTime.new(2001, 2, 3, 4, 5, 6.5).sec_fraction # => (1/2)
Returns the compiled instruction sequence represented by a RubyVM::InstructionSequence
instance on the :script_compiled
event.
Note that this method is CRuby-specific.
Returns the Fiber
scheduler, that was last set for the current thread with Fiber.set_scheduler
. Returns nil
if no scheduler is set (which is the default), and non-blocking fibers’ behavior is the same as blocking. (see “Non-blocking fibers” section in class docs for details about the scheduler concept).
The method is expected to immediately run the provided block of code in a separate non-blocking fiber.
puts "Go to sleep!" Fiber.set_scheduler(MyScheduler.new) Fiber.schedule do puts "Going to sleep" sleep(1) puts "I slept well" end puts "Wakey-wakey, sleepyhead"
Assuming MyScheduler is properly implemented, this program will produce:
Go to sleep! Going to sleep Wakey-wakey, sleepyhead ...1 sec pause here... I slept well
…e.g. on the first blocking operation inside the Fiber
(sleep(1)
), the control is yielded to the outside code (main fiber), and at the end of that execution, the scheduler takes care of properly resuming all the blocked fibers.
Note that the behavior described above is how the method is expected to behave, actual behavior is up to the current scheduler’s implementation of Fiber::Scheduler#fiber
method. Ruby
doesn’t enforce this method to behave in any particular way.
If the scheduler is not set, the method raises RuntimeError (No scheduler is available!)
.
Returns the fractional part of the day in range (Rational(0, 1)…Rational(1, 1)):
DateTime.new(2001,2,3,12).day_fraction # => (1/2)
Returns the fractional part of the second in range (Rational(0, 1)…Rational(1, 1)):
DateTime.new(2001, 2, 3, 4, 5, 6.5).sec_fraction # => (1/2)
Returns the sharing detection flag as a boolean value. It is false (nil) by default.
Sets the sharing detection flag to b.
Returns a new array that is the union of the elements of self
and all given arrays other_arrays
; items are compared using eql?
:
[0, 1, 2, 3].union([4, 5], [6, 7]) # => [0, 1, 2, 3, 4, 5, 6, 7]
Removes duplicates (preserving the first found):
[0, 1, 1].union([2, 1], [3, 1]) # => [0, 1, 2, 3]
Preserves order (preserving the position of the first found):
[3, 2, 1, 0].union([5, 3], [4, 2]) # => [3, 2, 1, 0, 5, 4]
With no arguments given, returns a copy of self
.
Related: see Methods for Combining.
Iterates over permutations of the elements of self
; the order of permutations is indeterminate.
With a block and an in-range positive integer argument count
(0 < count <= self.size
) given, calls the block with each permutation of self
of size count
; returns self
:
a = [0, 1, 2] perms = [] a.permutation(1) {|perm| perms.push(perm) } perms # => [[0], [1], [2]] perms = [] a.permutation(2) {|perm| perms.push(perm) } perms # => [[0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]] perms = [] a.permutation(3) {|perm| perms.push(perm) } perms # => [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
When count
is zero, calls the block once with a new empty array:
perms = [] a.permutation(0) {|perm| perms.push(perm) } perms # => [[]]
When count
is out of range (negative or larger than self.size
), does not call the block:
a.permutation(-1) {|permutation| fail 'Cannot happen' } a.permutation(4) {|permutation| fail 'Cannot happen' }
With no block given, returns a new Enumerator
.
Related: Methods for Iterating.
When a block and a positive integer-convertible object argument count
(0 < count <= self.size
) are given, calls the block with each combination of self
of size count
; returns self
:
a = %w[a b c] # => ["a", "b", "c"] a.combination(2) {|combination| p combination } # => ["a", "b", "c"]
Output:
["a", "b"] ["a", "c"] ["b", "c"]
The order of the yielded combinations is not guaranteed.
When count
is zero, calls the block once with a new empty array:
a.combination(0) {|combination| p combination } [].combination(0) {|combination| p combination }
Output:
[] []
When count
is negative or larger than self.size
and self
is non-empty, does not call the block:
a.combination(-1) {|combination| fail 'Cannot happen' } # => ["a", "b", "c"] a.combination(4) {|combination| fail 'Cannot happen' } # => ["a", "b", "c"]
With no block given, returns a new Enumerator
.
Related: Array#permutation
; see also Methods for Iterating.