Results for: "partition"

No documentation available

Add the install/update options to the option parser.

Add local/remote options to the command line parser.

Add the –bulk-threshold option

Add the –update-sources option

The iterator version of the strongly_connected_components method. obj.each_strongly_connected_component is similar to obj.strongly_connected_components.each, but modification of obj during the iteration may lead to unexpected results.

each_strongly_connected_component returns nil.

class G
  include TSort
  def initialize(g)
    @g = g
  end
  def tsort_each_child(n, &b) @g[n].each(&b) end
  def tsort_each_node(&b) @g.each_key(&b) end
end

graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
graph.each_strongly_connected_component {|scc| p scc }
#=> [4]
#   [2]
#   [3]
#   [1]

graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
graph.each_strongly_connected_component {|scc| p scc }
#=> [4]
#   [2, 3]
#   [1]

The iterator version of the TSort.strongly_connected_components method.

The graph is represented by each_node and each_child. each_node should have call method which yields for each node in the graph. each_child should have call method which takes a node argument and yields for each child node.

g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
each_node = lambda {|&b| g.each_key(&b) }
each_child = lambda {|n, &b| g[n].each(&b) }
TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc }
#=> [4]
#   [2]
#   [3]
#   [1]

g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
each_node = lambda {|&b| g.each_key(&b) }
each_child = lambda {|n, &b| g[n].each(&b) }
TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc }
#=> [4]
#   [2, 3]
#   [1]

Perform hostname verification following RFC 6125.

This method MUST be called after calling connect to ensure that the hostname of a remote peer has been verified.

1r ^^

Create an exception with class klass and message

No documentation available
No documentation available

returns the directory nesting of the extension, ignoring the first part, so “ext/foo/bar/Cargo.toml” becomes “foo/bar”

Attempts to return an array, based on the given object.

If object is an array, returns object.

Otherwise if object responds to :to_ary. calls object.to_ary: if the return value is an array or nil, returns that value; if not, raises TypeError.

Otherwise returns nil.

If object is an Integer object, returns object.

Integer.try_convert(1) # => 1

Otherwise if object responds to :to_int, calls object.to_int and returns the result.

Integer.try_convert(1.25) # => 1

Returns nil if object does not respond to :to_int

Integer.try_convert([]) # => nil

Raises an exception unless object.to_int returns an Integer object.

If object is a String object, returns object.

Otherwise if object responds to :to_str, calls object.to_str and returns the result.

Returns nil if object does not respond to :to_str.

Raises an exception unless object.to_str returns a String object.

Converts a pathname to an absolute pathname. Relative paths are referenced from the current working directory of the process unless dir_string is given, in which case it will be used as the starting point. The given pathname may start with a “~”, which expands to the process owner’s home directory (the environment variable HOME must be set correctly). “~user” expands to the named user’s home directory.

File.expand_path("~oracle/bin")           #=> "/home/oracle/bin"

A simple example of using dir_string is as follows.

File.expand_path("ruby", "/usr/bin")      #=> "/usr/bin/ruby"

A more complex example which also resolves parent directory is as follows. Suppose we are in bin/mygem and want the absolute path of lib/mygem.rb.

File.expand_path("../../lib/mygem.rb", __FILE__)
#=> ".../path/to/project/lib/mygem.rb"

So first it resolves the parent of __FILE__, that is bin/, then go to the parent, the root of the project and appends lib/mygem.rb.

Returns a copy of self with the given start value:

d0 = Date.new(2000, 2, 3)
d0.julian? # => false
d1 = d0.new_start(Date::JULIAN)
d1.julian? # => true

See argument start.

Returns a new Time object with the same value as self; if self is a Julian date, derives its Gregorian date for conversion to the Time object:

Date.new(2001, 2, 3).to_time               # => 2001-02-03 00:00:00 -0600
Date.new(2001, 2, 3, Date::JULIAN).to_time # => 2001-02-16 00:00:00 -0600

Returns a DateTime whose value is the same as self:

Date.new(2001, 2, 3).to_datetime # => #<DateTime: 2001-02-03T00:00:00+00:00>

Returns a Time object which denotes self.

Returns self.

Returns self.

Returns a DateTime object which denotes self.

Waits until IO is writable and returns a truthy value or a falsy value when times out.

You must require ‘io/wait’ to use this method.

Search took: 2ms  ·  Total Results: 3065