Returns the short user name of the currently logged in user. Unfortunately, it is often rather easy to fool ::getlogin
.
Avoid ::getlogin
for security-related purposes.
If ::getlogin
fails, try ::getpwuid
.
See the unix manpage for getpwuid(3)
for more detail.
e.g.
Etc.getlogin -> 'guest'
Returns garbage collector generation for the given object
.
class B include ObjectSpace def foo trace_object_allocations do obj = Object.new p "Generation is #{allocation_generation(obj)}" end end end B.new.foo #=> "Generation is 3"
See ::trace_object_allocations
for more information and examples.
Since self
is already an Integer, always returns true
.
Returns a new Time
object representing the value of self
converted to a given timezone; if zone
is nil
, the local timezone is used:
t = Time.utc(2000) # => 2000-01-01 00:00:00 UTC t.getlocal # => 1999-12-31 18:00:00 -0600 t.getlocal('+12:00') # => 2000-01-01 12:00:00 +1200
For forms of argument zone
, see Timezone Specifiers.
Merges the elements of the given enumerable objects to the set and returns self.
Obtains the port number for service_name.
If protocol_name is not given, “tcp” is assumed.
Socket.getservbyname("smtp") #=> 25 Socket.getservbyname("shell") #=> 514 Socket.getservbyname("syslog", "udp") #=> 514
Obtains the port number for port.
If protocol_name is not given, “tcp” is assumed.
Socket.getservbyport(80) #=> "www" Socket.getservbyport(514, "tcp") #=> "shell" Socket.getservbyport(514, "udp") #=> "syslog"
Returns the remote address of the socket as a sockaddr string.
TCPServer.open("127.0.0.1", 1440) {|serv| c = TCPSocket.new("127.0.0.1", 1440) s = serv.accept p s.getpeername #=> "\x02\x00\x82u\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00" }
If Addrinfo
object is preferred over the binary string, use BasicSocket#remote_address
.
Returns the user and group on the peer of the UNIX socket. The result is a two element array which contains the effective uid and the effective gid.
Socket.unix_server_loop("/tmp/sock") {|s| begin euid, egid = s.getpeereid # Check the connected client is myself or not. next if euid != Process.uid # do something about my resource. ensure s.close end }
Runs the early binding method to get property. The 1st argument specifies dispatch ID, the 2nd argument specifies the array of arguments, the 3rd argument specifies the array of the type of arguments.
excel = WIN32OLE.new('Excel.Application') puts excel._getproperty(558, [], []) # same effect as puts excel.visible
Merges each of other_hashes
into self
; returns self
.
Each argument in other_hashes
must be a Hash
.
With arguments and no block:
Returns self
, after the given hashes are merged into it.
The given hashes are merged left to right.
Each new entry is added at the end.
Each duplicate-key entry’s value overwrites the previous value.
Example:
h = {foo: 0, bar: 1, baz: 2} h1 = {bat: 3, bar: 4} h2 = {bam: 5, bat:6} h.merge!(h1, h2) # => {:foo=>0, :bar=>4, :baz=>2, :bat=>6, :bam=>5}
With arguments and a block:
Returns self
, after the given hashes are merged.
The given hashes are merged left to right.
Each new-key entry is added at the end.
For each duplicate key:
Calls the block with the key and the old and new values.
The block’s return value becomes the new value for the entry.
Example:
h = {foo: 0, bar: 1, baz: 2} h1 = {bat: 3, bar: 4} h2 = {bam: 5, bat:6} h3 = h.merge!(h1, h2) { |key, old_value, new_value| old_value + new_value } h3 # => {:foo=>0, :bar=>5, :baz=>2, :bat=>9, :bam=>5}
With no arguments:
Returns self
, unmodified.
The block, if given, is ignored.
Example:
h = {foo: 0, bar: 1, baz: 2} h.merge # => {:foo=>0, :bar=>1, :baz=>2} h1 = h.merge! { |key, old_value, new_value| raise 'Cannot happen' } h1 # => {:foo=>0, :bar=>1, :baz=>2}
Returns the new Hash
formed by merging each of other_hashes
into a copy of self
.
Each argument in other_hashes
must be a Hash
.
With arguments and no block:
Returns the new Hash
object formed by merging each successive Hash
in other_hashes
into self
.
Each new-key entry is added at the end.
Each duplicate-key entry’s value overwrites the previous value.
Example:
h = {foo: 0, bar: 1, baz: 2} h1 = {bat: 3, bar: 4} h2 = {bam: 5, bat:6} h.merge(h1, h2) # => {:foo=>0, :bar=>4, :baz=>2, :bat=>6, :bam=>5}
With arguments and a block:
Returns a new Hash
object that is the merge of self
and each given hash.
The given hashes are merged left to right.
Each new-key entry is added at the end.
For each duplicate key:
Calls the block with the key and the old and new values.
The block’s return value becomes the new value for the entry.
Example:
h = {foo: 0, bar: 1, baz: 2} h1 = {bat: 3, bar: 4} h2 = {bam: 5, bat:6} h3 = h.merge(h1, h2) { |key, old_value, new_value| old_value + new_value } h3 # => {:foo=>0, :bar=>5, :baz=>2, :bat=>9, :bam=>5}
With no arguments:
Returns a copy of self
.
The block, if given, is ignored.
Example:
h = {foo: 0, bar: 1, baz: 2} h.merge # => {:foo=>0, :bar=>1, :baz=>2} h1 = h.merge { |key, old_value, new_value| raise 'Cannot happen' } h1 # => {:foo=>0, :bar=>1, :baz=>2}
Adds to ENV
each key/value pair in the given hash
; returns ENV:
ENV.replace('foo' => '0', 'bar' => '1') ENV.merge!('baz' => '2', 'bat' => '3') # => {"bar"=>"1", "bat"=>"3", "baz"=>"2", "foo"=>"0"}
Deletes the ENV
entry for a hash value that is nil
:
ENV.merge!('baz' => nil, 'bat' => nil) # => {"bar"=>"1", "foo"=>"0"}
For an already-existing name, if no block given, overwrites the ENV
value:
ENV.merge!('foo' => '4') # => {"bar"=>"1", "foo"=>"4"}
For an already-existing name, if block given, yields the name, its ENV
value, and its hash value; the block’s return value becomes the new name:
ENV.merge!('foo' => '5') { |name, env_val, hash_val | env_val + hash_val } # => {"bar"=>"1", "foo"=>"45"}
Raises an exception if a name or value is invalid (see Invalid Names and Values);
ENV.replace('foo' => '0', 'bar' => '1') ENV.merge!('foo' => '6', :bar => '7', 'baz' => '9') # Raises TypeError (no implicit conversion of Symbol into String) ENV # => {"bar"=>"1", "foo"=>"6"} ENV.merge!('foo' => '7', 'bar' => 8, 'baz' => '9') # Raises TypeError (no implicit conversion of Integer into String) ENV # => {"bar"=>"1", "foo"=>"7"}
Raises an exception if the block returns an invalid name: (see Invalid Names and Values):
ENV.merge!('bat' => '8', 'foo' => '9') { |name, env_val, hash_val | 10 } # Raises TypeError (no implicit conversion of Integer into String) ENV # => {"bar"=>"1", "bat"=>"8", "foo"=>"7"}
Note that for the exceptions above, hash pairs preceding an invalid name or value are processed normally; those following are ignored.
Returns an integer converted from object
.
Tries to convert object
to an integer using to_int
first and to_i
second; see below for exceptions.
With a non-zero base
, object
must be a string or convertible to a string.
With integer argument object
given, returns object
:
Integer(1) # => 1 Integer(-1) # => -1
With floating-point argument object
given, returns object
truncated to an integer:
Integer(1.9) # => 1 # Rounds toward zero. Integer(-1.9) # => -1 # Rounds toward zero.
With string argument object
and zero base
given, returns object
converted to an integer in base 10:
Integer('100') # => 100 Integer('-100') # => -100
With base
zero, string object
may contain leading characters to specify the actual base (radix indicator):
Integer('0100') # => 64 # Leading '0' specifies base 8. Integer('0b100') # => 4 # Leading '0b', specifies base 2. Integer('0x100') # => 256 # Leading '0x' specifies base 16.
With a positive base
(in range 2..36) given, returns object
converted to an integer in the given base:
Integer('100', 2) # => 4 Integer('100', 8) # => 64 Integer('-100', 16) # => -256
With a negative base
(in range -36..-2) given, returns object
converted to an integer in the radix indicator if exists or -base
:
Integer('0x100', -2) # => 256 Integer('100', -2) # => 4 Integer('0b100', -8) # => 4 Integer('100', -8) # => 64 Integer('0o100', -10) # => 64 Integer('100', -10) # => 100
base
-1 is equal the -10 case.
When converting strings, surrounding whitespace and embedded underscores are allowed and ignored:
Integer(' 100 ') # => 100 Integer('-1_0_0', 16) # => -256
Examples with object
of various other classes:
Integer(Rational(9, 10)) # => 0 # Rounds toward zero. Integer(Complex(2, 0)) # => 2 # Imaginary part must be zero. Integer(Time.now) # => 1650974042
With optional keyword argument exception
given as true
(the default):
Raises TypeError
if object
does not respond to to_int
or to_i
.
Raises TypeError
if object
is nil
.
Raise ArgumentError
if object
is an invalid string.
With exception
given as false
, an exception of any kind is suppressed and nil
is returned.
Returns a String containing the generated JSON data.
See also JSON.fast_generate
, JSON.pretty_generate
.
Argument obj
is the Ruby object to be converted to JSON.
Argument opts
, if given, contains a Hash of options for the generation. See Generating Options.
When obj
is an Array, returns a String containing a JSON array:
obj = ["foo", 1.0, true, false, nil] json = JSON.generate(obj) json # => '["foo",1.0,true,false,null]'
When obj
is a Hash, returns a String containing a JSON object:
obj = {foo: 0, bar: 's', baz: :bat} json = JSON.generate(obj) json # => '{"foo":0,"bar":"s","baz":"bat"}'
For examples of generating from other Ruby objects, see Generating JSON from Other Objects.
Raises an exception if any formatting option is not a String.
Raises an exception if obj
contains circular references:
a = []; b = []; a.push(b); b.push(a) # Raises JSON::NestingError (nesting of 100 is too deep): JSON.generate(a)
Returns the base base
logarithm of x
.
Domain: [0, INFINITY]
.
Range: [-INFINITY, INFINITY)]
.
Examples:
log(0.0) # => -Infinity log(1.0) # => 0.0 log(E) # => 1.0 log(INFINITY) # => Infinity log(0.0, 2.0) # => -Infinity log(1.0, 2.0) # => 0.0 log(2.0, 2.0) # => 1.0 log(0.0, 10.0) # => -Infinity log(1.0, 10.0) # => 0.0 log(10.0, 10.0) # => 1.0
Returns the base 2 logarithm of x
.
Domain: [0, INFINITY]
.
Range: [-INFINITY, INFINITY]
.
Examples:
log2(0.0) # => -Infinity log2(1.0) # => 0.0 log2(2.0) # => 1.0 log2(INFINITY) # => Infinity
Returns the base 10 logarithm of x
.
Domain: [0, INFINITY]
.
Range: [-INFINITY, INFINITY]
.
Examples:
log10(0.0) # => -Infinity log10(1.0) # => 0.0 log10(10.0) # => 1.0 log10(INFINITY) # => Infinity
creates a TCP/IP server on port and calls the block for each connection accepted. The block is called with a socket and a client_address as an Addrinfo
object.
If host is specified, it is used with port to determine the server addresses.
The socket is not closed when the block returns. So application should close it explicitly.
This method calls the block sequentially. It means that the next connection is not accepted until the block returns. So concurrent mechanism, thread for example, should be used to service multiple clients at a time.
Note that Addrinfo.getaddrinfo
is used to determine the server socket addresses. When Addrinfo.getaddrinfo
returns two or more addresses, IPv4 and IPv6 address for example, all of them are used. Socket.tcp_server_loop
succeeds if one socket can be used at least.
# Sequential echo server. # It services only one client at a time. Socket.tcp_server_loop(16807) {|sock, client_addrinfo| begin IO.copy_stream(sock, sock) ensure sock.close end } # Threaded echo server # It services multiple clients at a time. # Note that it may accept connections too much. Socket.tcp_server_loop(16807) {|sock, client_addrinfo| Thread.new { begin IO.copy_stream(sock, sock) ensure sock.close end } }
creates a UDP/IP server on port and calls the block for each message arrived. The block is called with the message and its source information.
This method allocates sockets internally using port. If host is specified, it is used conjunction with port to determine the server addresses.
The msg is a string.
The msg_src is a Socket::UDPSource
object. It is used for reply.
# UDP/IP echo server. Socket.udp_server_loop(9261) {|msg, msg_src| msg_src.reply msg }
creates a UNIX socket server on path. It calls the block for each socket accepted.
If host is specified, it is used with port to determine the server ports.
The socket is not closed when the block returns. So application should close it.
This method deletes the socket file pointed by path at first if the file is a socket file and it is owned by the user of the application. This is safe only if the directory of path is not changed by a malicious user. So don’t use /tmp/malicious-users-directory/socket. Note that /tmp/socket and /tmp/your-private-directory/socket is safe assuming that /tmp has sticky bit.
# Sequential echo server. # It services only one client at a time. Socket.unix_server_loop("/tmp/sock") {|sock, client_addrinfo| begin IO.copy_stream(sock, sock) ensure sock.close end }