Returns a 3-element array of substrings of self
.
Matches a pattern against self
, scanning backwards from the end. The pattern is:
string_or_regexp
itself, if it is a Regexp
.
Regexp.quote(string_or_regexp)
, if string_or_regexp
is a string.
If the pattern is matched, returns pre-match, last-match, post-match:
'hello'.rpartition('l') # => ["hel", "l", "o"] 'hello'.rpartition('ll') # => ["he", "ll", "o"] 'hello'.rpartition('h') # => ["", "h", "ello"] 'hello'.rpartition('o') # => ["hell", "o", ""] 'hello'.rpartition(/l+/) # => ["hel", "l", "o"] 'hello'.rpartition('') # => ["hello", "", ""] 'тест'.rpartition('т') # => ["тес", "т", ""] 'こんにちは'.rpartition('に') # => ["こん", "に", "ちは"]
If the pattern is not matched, returns two empty strings and a copy of self
:
'hello'.rpartition('x') # => ["", "", "hello"]
Related: String#partition
, String#split
.
Returns garbage collector generation for the given object
.
class B include ObjectSpace def foo trace_object_allocations do obj = Object.new p "Generation is #{allocation_generation(obj)}" end end end B.new.foo #=> "Generation is 3"
See ::trace_object_allocations
for more information and examples.
Reads up to maxlen
bytes from the stream; returns a string (either a new string or the given out_string
). Its encoding is:
The unchanged encoding of out_string
, if out_string
is given.
ASCII-8BIT, otherwise.
Contains maxlen
bytes from the stream, if available.
Otherwise contains all available bytes, if any available.
Otherwise is an empty string.
With the single non-negative integer argument maxlen
given, returns a new string:
f = File.new('t.txt') f.readpartial(20) # => "First line\nSecond l" f.readpartial(20) # => "ine\n\nFourth line\n" f.readpartial(20) # => "Fifth line\n" f.readpartial(20) # Raises EOFError. f.close
With both argument maxlen
and string argument out_string
given, returns modified out_string
:
f = File.new('t.txt') s = 'foo' f.readpartial(20, s) # => "First line\nSecond l" s = 'bar' f.readpartial(0, s) # => "" f.close
This method is useful for a stream such as a pipe, a socket, or a tty. It blocks only when no data is immediately available. This means that it blocks only when all of the following are true:
The byte buffer in the stream is empty.
The content of the stream is empty.
The stream is not at EOF.
When blocked, the method waits for either more data or EOF on the stream:
If more data is read, the method returns the data.
If EOF is reached, the method raises EOFError
.
When not blocked, the method responds immediately:
Returns data from the buffer if there is any.
Otherwise returns data from the stream if there is any.
Otherwise raises EOFError
if the stream has reached EOF.
Note that this method is similar to sysread. The differences are:
If the byte buffer is not empty, read from the byte buffer instead of “sysread for buffered IO
(IOError
)”.
It doesn’t cause Errno::EWOULDBLOCK and Errno::EINTR. When readpartial meets EWOULDBLOCK and EINTR by read system call, readpartial retries the system call.
The latter means that readpartial is non-blocking-flag insensitive. It blocks on the situation IO#sysread
causes Errno::EWOULDBLOCK as if the fd is blocking mode.
Examples:
# # Returned Buffer Content Pipe Content r, w = IO.pipe # w << 'abc' # "" "abc". r.readpartial(4096) # => "abc" "" "" r.readpartial(4096) # (Blocks because buffer and pipe are empty.) # # Returned Buffer Content Pipe Content r, w = IO.pipe # w << 'abc' # "" "abc" w.close # "" "abc" EOF r.readpartial(4096) # => "abc" "" EOF r.readpartial(4096) # raises EOFError # # Returned Buffer Content Pipe Content r, w = IO.pipe # w << "abc\ndef\n" # "" "abc\ndef\n" r.gets # => "abc\n" "def\n" "" w << "ghi\n" # "def\n" "ghi\n" r.readpartial(4096) # => "def\n" "" "ghi\n" r.readpartial(4096) # => "ghi\n" "" ""
Reads at most maxlen bytes from the ARGF
stream.
If the optional outbuf argument is present, it must reference a String
, which will receive the data. The outbuf will contain only the received data after the method call even if it is not empty at the beginning.
It raises EOFError
on end of ARGF
stream. Since ARGF
stream is a concatenation of multiple files, internally EOF is occur for each file. ARGF.readpartial
returns empty strings for EOFs except the last one and raises EOFError
for the last one.
The standard configuration object for gems.
Use the given configuration object (which implements the ConfigFile
protocol) as the standard configuration object.
Returns a new Array
containing each element found both in self
and in all of the given Arrays other_arrays
; duplicates are omitted; items are compared using eql?
(items must also implement hash
correctly):
[0, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1] [0, 0, 1, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1]
Preserves order from self
:
[0, 1, 2].intersection([2, 1, 0]) # => [0, 1, 2]
Returns a copy of self
if no arguments given.
Related: Array#&
.
When invoked with a block, yield all permutations of elements of self
; returns self
. The order of permutations is indeterminate.
When a block and an in-range positive Integer
argument n
(0 < n <= self.size
) are given, calls the block with all n
-tuple permutations of self
.
Example:
a = [0, 1, 2] a.permutation(2) {|permutation| p permutation }
Output:
[0, 1] [0, 2] [1, 0] [1, 2] [2, 0] [2, 1]
Another example:
a = [0, 1, 2] a.permutation(3) {|permutation| p permutation }
Output:
[0, 1, 2] [0, 2, 1] [1, 0, 2] [1, 2, 0] [2, 0, 1] [2, 1, 0]
When n
is zero, calls the block once with a new empty Array
:
a = [0, 1, 2] a.permutation(0) {|permutation| p permutation }
Output:
[]
When n
is out of range (negative or larger than self.size
), does not call the block:
a = [0, 1, 2] a.permutation(-1) {|permutation| fail 'Cannot happen' } a.permutation(4) {|permutation| fail 'Cannot happen' }
When a block given but no argument, behaves the same as a.permutation(a.size)
:
a = [0, 1, 2] a.permutation {|permutation| p permutation }
Output:
[0, 1, 2] [0, 2, 1] [1, 0, 2] [1, 2, 0] [2, 0, 1] [2, 1, 0]
Returns a new Enumerator
if no block given:
a = [0, 1, 2] a.permutation # => #<Enumerator: [0, 1, 2]:permutation> a.permutation(2) # => #<Enumerator: [0, 1, 2]:permutation(2)>
Calls the block, if given, with combinations of elements of self
; returns self
. The order of combinations is indeterminate.
When a block and an in-range positive Integer
argument n
(0 < n <= self.size
) are given, calls the block with all n
-tuple combinations of self
.
Example:
a = [0, 1, 2] a.combination(2) {|combination| p combination }
Output:
[0, 1] [0, 2] [1, 2]
Another example:
a = [0, 1, 2] a.combination(3) {|combination| p combination }
Output:
[0, 1, 2]
When n
is zero, calls the block once with a new empty Array
:
a = [0, 1, 2] a1 = a.combination(0) {|combination| p combination }
Output:
[]
When n
is out of range (negative or larger than self.size
), does not call the block:
a = [0, 1, 2] a.combination(-1) {|combination| fail 'Cannot happen' } a.combination(4) {|combination| fail 'Cannot happen' }
Returns a new Enumerator
if no block given:
a = [0, 1, 2] a.combination(2) # => #<Enumerator: [0, 1, 2]:combination(2)>
Returns the value as a rational. The optional argument eps
is always ignored.
Returns a Rational
object whose value is exactly or approximately equivalent to that of self.real
.
With no argument epsilon
given, returns a Rational object whose value is exactly equal to that of self.real.rationalize
:
Complex.rect(1, 0).rationalize # => (1/1) Complex.rect(1, Rational(0, 1)).rationalize # => (1/1) Complex.rect(3.14159, 0).rationalize # => (314159/100000)
With argument epsilon
given, returns a Rational object whose value is exactly or approximately equal to that of self.real
to the given precision:
Complex.rect(3.14159, 0).rationalize(0.1) # => (16/5) Complex.rect(3.14159, 0).rationalize(0.01) # => (22/7) Complex.rect(3.14159, 0).rationalize(0.001) # => (201/64) Complex.rect(3.14159, 0).rationalize(0.0001) # => (333/106) Complex.rect(3.14159, 0).rationalize(0.00001) # => (355/113) Complex.rect(3.14159, 0).rationalize(0.000001) # => (7433/2366) Complex.rect(3.14159, 0).rationalize(0.0000001) # => (9208/2931) Complex.rect(3.14159, 0).rationalize(0.00000001) # => (47460/15107) Complex.rect(3.14159, 0).rationalize(0.000000001) # => (76149/24239) Complex.rect(3.14159, 0).rationalize(0.0000000001) # => (314159/100000) Complex.rect(3.14159, 0).rationalize(0.0) # => (3537115888337719/1125899906842624)
Related: Complex#to_r
.
Returns zero as a Rational:
nil.rationalize # => (0/1)
Argument eps
is ignored.
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps
is not given, it will be chosen automatically.
0.3.rationalize #=> (3/10) 1.333.rationalize #=> (1333/1000) 1.333.rationalize(0.01) #=> (4/3)
See also Float#to_r
.
Returns an exception object of the same class as self
; useful for creating a similar exception, but with a different message.
With message
nil
, returns self
:
x0 = StandardError.new('Boom') # => #<StandardError: Boom> x1 = x0.exception # => #<StandardError: Boom> x0.__id__ == x1.__id__ # => true
With string-convertible object message
(even the same as the original message), returns a new exception object whose class is the same as self
, and whose message is the given message
:
x1 = x0.exception('Boom') # => #<StandardError: Boom> x0..equal?(x1) # => false
Returns an exception object of the same class as self
; useful for creating a similar exception, but with a different message.
With message
nil
, returns self
:
x0 = StandardError.new('Boom') # => #<StandardError: Boom> x1 = x0.exception # => #<StandardError: Boom> x0.__id__ == x1.__id__ # => true
With string-convertible object message
(even the same as the original message), returns a new exception object whose class is the same as self
, and whose message is the given message
:
x1 = x0.exception('Boom') # => #<StandardError: Boom> x0..equal?(x1) # => false