Results for: "strip"

Parses the given representation of date and time with the given template, and returns a hash of parsed elements. _strptime does not support specification of flags and width unlike strftime.

See also strptime(3) and strftime.

Parses the given representation of date and time with the given template, and creates a DateTime object. strptime does not support specification of flags and width unlike strftime.

DateTime.strptime('2001-02-03T04:05:06+07:00', '%Y-%m-%dT%H:%M:%S%z')
                          #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
DateTime.strptime('03-02-2001 04:05:06 PM', '%d-%m-%Y %I:%M:%S %p')
                          #=> #<DateTime: 2001-02-03T16:05:06+00:00 ...>
DateTime.strptime('2001-W05-6T04:05:06+07:00', '%G-W%V-%uT%H:%M:%S%z')
                          #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
DateTime.strptime('2001 04 6 04 05 06 +7', '%Y %U %w %H %M %S %z')
                          #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
DateTime.strptime('2001 05 6 04 05 06 +7', '%Y %W %u %H %M %S %z')
                          #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
DateTime.strptime('-1', '%s')
                          #=> #<DateTime: 1969-12-31T23:59:59+00:00 ...>
DateTime.strptime('-1000', '%Q')
                          #=> #<DateTime: 1969-12-31T23:59:59+00:00 ...>
DateTime.strptime('sat3feb014pm+7', '%a%d%b%y%H%p%z')
                          #=> #<DateTime: 2001-02-03T16:00:00+07:00 ...>

See also strptime(3) and strftime.

Returns a string representation of self, formatted according the given +format:

DateTime.now.strftime # => "2022-07-01T11:03:19-05:00"

For other formats, see Formats for Dates and Times:

Works similar to parse except that instead of using a heuristic to detect the format of the input string, you provide a second argument that describes the format of the string.

Raises ArgumentError if the date or format is invalid.

If a block is given, the year described in date is converted by the block. For example:

Time.strptime(...) {|y| y < 100 ? (y >= 69 ? y + 1900 : y + 2000) : y}

Below is a list of the formatting options:

%a

The abbreviated weekday name (“Sun”)

%A

The full weekday name (“Sunday”)

%b

The abbreviated month name (“Jan”)

%B

The full month name (“January”)

%c

The preferred local date and time representation

%C

Century (20 in 2009)

%d

Day of the month (01..31)

%D

Date (%m/%d/%y)

%e

Day of the month, blank-padded ( 1..31)

%F

Equivalent to %Y-%m-%d (the ISO 8601 date format)

%g

The last two digits of the commercial year

%G

The week-based year according to ISO-8601 (week 1 starts on Monday and includes January 4)

%h

Equivalent to %b

%H

Hour of the day, 24-hour clock (00..23)

%I

Hour of the day, 12-hour clock (01..12)

%j

Day of the year (001..366)

%k

hour, 24-hour clock, blank-padded ( 0..23)

%l

hour, 12-hour clock, blank-padded ( 0..12)

%L

Millisecond of the second (000..999)

%m

Month of the year (01..12)

%M

Minute of the hour (00..59)

%n

Newline (n)

%N

Fractional seconds digits

%p

Meridian indicator (“AM” or “PM”)

%P

Meridian indicator (“am” or “pm”)

%r

time, 12-hour (same as %I:%M:%S %p)

%R

time, 24-hour (%H:%M)

%s

Number of seconds since 1970-01-01 00:00:00 UTC.

%S

Second of the minute (00..60)

%t

Tab character (t)

%T

time, 24-hour (%H:%M:%S)

%u

Day of the week as a decimal, Monday being 1. (1..7)

%U

Week number of the current year, starting with the first Sunday as the first day of the first week (00..53)

%v

VMS date (%e-%b-%Y)

%V

Week number of year according to ISO 8601 (01..53)

%W

Week number of the current year, starting with the first Monday as the first day of the first week (00..53)

%w

Day of the week (Sunday is 0, 0..6)

%x

Preferred representation for the date alone, no time

%X

Preferred representation for the time alone, no date

%y

Year without a century (00..99)

%Y

Year which may include century, if provided

%z

Time zone as hour offset from UTC (e.g. +0900)

%Z

Time zone name

%%

Literal “%” character

%+

date(1) (%a %b %e %H:%M:%S %Z %Y)

require 'time'

Time.strptime("2000-10-31", "%Y-%m-%d") #=> 2000-10-31 00:00:00 -0500

You must require ‘time’ to use this method.

Returns a string representation of self, formatted according to the given string format. See Formats for Dates and Times.

Returns an array containing the elements in self, if a finite collection; raises an exception otherwise.

(1..4).to_a     # => [1, 2, 3, 4]
(1...4).to_a    # => [1, 2, 3]
('a'..'d').to_a # => ["a", "b", "c", "d"]

Returns the values in self as an array:

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.to_a # => ["Joe Smith", "123 Maple, Anytown NC", 12345]

Related: members.

Return the entries (files and subdirectories) in the directory, each as a Pathname object.

The results contains just the names in the directory, without any trailing slashes or recursive look-up.

pp Pathname.new('/usr/local').entries
#=> [#<Pathname:share>,
#    #<Pathname:lib>,
#    #<Pathname:..>,
#    #<Pathname:include>,
#    #<Pathname:etc>,
#    #<Pathname:bin>,
#    #<Pathname:man>,
#    #<Pathname:games>,
#    #<Pathname:.>,
#    #<Pathname:sbin>,
#    #<Pathname:src>]

The result may contain the current directory and the parent directory .

If you don’t want . and .. and want directories, consider Pathname#children.

Returns the values in self as an array, to use in pattern matching:

Measure = Data.define(:amount, :unit)

distance = Measure[10, 'km']
distance.deconstruct #=> [10, "km"]

# usage
case distance
in n, 'km' # calls #deconstruct underneath
  puts "It is #{n} kilometers away"
else
  puts "Don't know how to handle it"
end
# prints "It is 10 kilometers away"

Or, with checking the class, too:

case distance
in Measure(n, 'km')
  puts "It is #{n} kilometers away"
# ...
end

Returns the array of captures, which are all matches except m[0]:

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
# => #<MatchData "HX1138" 1:"H" 2:"X" 3:"113" 4:"8">
m[0]       # => "HX1138"
m.captures # => ["H", "X", "113", "8"]

Related: MatchData.to_a.

Returns the priority of thr. Default is inherited from the current thread which creating the new thread, or zero for the initial main thread; higher-priority thread will run more frequently than lower-priority threads (but lower-priority threads can also run).

This is just hint for Ruby thread scheduler. It may be ignored on some platform.

Thread.current.priority   #=> 0

Sets the priority of thr to integer. Higher-priority threads will run more frequently than lower-priority threads (but lower-priority threads can also run).

This is just hint for Ruby thread scheduler. It may be ignored on some platform.

count1 = count2 = 0
a = Thread.new do
      loop { count1 += 1 }
    end
a.priority = -1

b = Thread.new do
      loop { count2 += 1 }
    end
b.priority = -2
sleep 1   #=> 1
count1    #=> 622504
count2    #=> 5832

Returns an array containing the items in self:

(0..4).to_a # => [0, 1, 2, 3, 4]

Returns system configuration variable using confstr().

name should be a constant under Etc which begins with CS_.

The return value is a string or nil. nil means no configuration-defined value. (confstr() returns 0 but errno is not set.)

Etc.confstr(Etc::CS_PATH) #=> "/bin:/usr/bin"

# GNU/Linux
Etc.confstr(Etc::CS_GNU_LIBC_VERSION) #=> "glibc 2.18"
Etc.confstr(Etc::CS_GNU_LIBPTHREAD_VERSION) #=> "NPTL 2.18"

Returns the current status of GC stress mode.

Updates the GC stress mode.

When stress mode is enabled, the GC is invoked at every GC opportunity: all memory and object allocations.

Enabling stress mode will degrade performance; it is only for debugging.

The flag can be true, false, or an integer bitwise-ORed with the following flags:

0x01:: no major GC
0x02:: no immediate sweep
0x04:: full mark after malloc/calloc/realloc

Returns the scheduling priority for specified process, process group, or user.

Argument kind is one of:

Argument id is the ID for the process, process group, or user; zero specified the current ID for kind.

Examples:

Process.getpriority(Process::PRIO_USER, 0)    # => 19
Process.getpriority(Process::PRIO_PROCESS, 0) # => 19

Not available on all platforms.

See Process.getpriority.

Examples:

Process.setpriority(Process::PRIO_USER, 0, 19)    # => 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19) # => 0
Process.getpriority(Process::PRIO_USER, 0)        # => 19
Process.getpriority(Process::PRIO_PROCESS, 0)     # => 19

Not available on all platforms.

Performs a Miller-Rabin probabilistic primality test for bn.

Deprecated in version 3.0. Use prime? instead.

checks and trial_div parameters no longer have any effect.

Called with encoding when the YAML stream starts. This method is called once per stream. A stream may contain multiple documents.

See the constants in Psych::Parser for the possible values of encoding.

No documentation available

Start a stream emission with encoding

See Psych::Handler#start_stream

Read a chunk or all of the buffer into a string, in the specified encoding. If no encoding is provided Encoding::BINARY is used.

buffer = IO::Buffer.for('test')
buffer.get_string
# => "test"
buffer.get_string(2)
# => "st"
buffer.get_string(2, 1)
# => "s"

Efficiently copy from a source String into the buffer, at offset using memmove.

buf = IO::Buffer.new(8)
# =>
# #<IO::Buffer 0x0000557412714a20+8 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00                         ........

# set buffer starting from offset 1, take 2 bytes starting from string's
# second
buf.set_string('test', 1, 2, 1)
# => 2
buf
# =>
# #<IO::Buffer 0x0000557412714a20+8 INTERNAL>
# 0x00000000  00 65 73 00 00 00 00 00                         .es.....

See also copy for examples of how buffer writing might be used for changing associated strings and files.

No documentation available
Search took: 3ms  ·  Total Results: 1654