Returns whether or not the given entry point func
can be found within lib
. If func
is nil
, the main()
entry point is used by default. If found, it adds the library to list of libraries to be used when linking your extension.
If headers
are provided, it will include those header files as the header files it looks in when searching for func
.
The real name of the library to be linked can be altered by --with-FOOlib
configuration option.
Returns whether or not the function func
can be found in the common header files, or within any headers
that you provide. If found, a macro is passed as a preprocessor constant to the compiler using the function name, in uppercase, prepended with HAVE_
.
To check functions in an additional library, you need to check that library first using have_library()
. The func
shall be either mere function name or function name with arguments.
For example, if have_func('foo')
returned true
, then the HAVE_FOO
preprocessor macro would be passed to the compiler.
Returns whether or not the variable var
can be found in the common header files, or within any headers
that you provide. If found, a macro is passed as a preprocessor constant to the compiler using the variable name, in uppercase, prepended with HAVE_
.
To check variables in an additional library, you need to check that library first using have_library()
.
For example, if have_var('foo')
returned true, then the HAVE_FOO
preprocessor macro would be passed to the compiler.
Returns whether or not the given header
file can be found on your system. If found, a macro is passed as a preprocessor constant to the compiler using the header file name, in uppercase, prepended with HAVE_
.
For example, if have_header('foo.h')
returned true, then the HAVE_FOO_H
preprocessor macro would be passed to the compiler.
Returns whether or not the given framework
can be found on your system. If found, a macro is passed as a preprocessor constant to the compiler using the framework name, in uppercase, prepended with HAVE_FRAMEWORK_
.
For example, if have_framework('Ruby')
returned true, then the HAVE_FRAMEWORK_RUBY
preprocessor macro would be passed to the compiler.
If fw
is a pair of the framework name and its header file name that header file is checked, instead of the normally used header file which is named same as the framework.
Generates a header file consisting of the various macro definitions generated by other methods such as have_func
and have_header. These are then wrapped in a custom #ifndef
based on the header
file name, which defaults to “extconf.h”.
For example:
# extconf.rb require 'mkmf' have_func('realpath') have_header('sys/utime.h') create_header create_makefile('foo')
The above script would generate the following extconf.h file:
#ifndef EXTCONF_H #define EXTCONF_H #define HAVE_REALPATH 1 #define HAVE_SYS_UTIME_H 1 #endif
Given that the create_header
method generates a file based on definitions set earlier in your extconf.rb file, you will probably want to make this one of the last methods you call in your script.
Generates the Makefile for your extension, passing along any options and preprocessor constants that you may have generated through other methods.
The target
name should correspond the name of the global function name defined within your C extension, minus the Init_
. For example, if your C extension is defined as Init_foo
, then your target would simply be “foo”.
If any “/” characters are present in the target name, only the last name is interpreted as the target name, and the rest are considered toplevel directory names, and the generated Makefile will be altered accordingly to follow that directory structure.
For example, if you pass “test/foo” as a target name, your extension will be installed under the “test” directory. This means that in order to load the file within a Ruby
program later, that directory structure will have to be followed, e.g. require 'test/foo'
.
The srcprefix
should be used when your source files are not in the same directory as your build script. This will not only eliminate the need for you to manually copy the source files into the same directory as your build script, but it also sets the proper target_prefix
in the generated Makefile.
Setting the target_prefix
will, in turn, install the generated binary in a directory under your RbConfig::CONFIG['sitearchdir']
that mimics your local filesystem when you run make install
.
For example, given the following file tree:
ext/ extconf.rb test/ foo.c
And given the following code:
create_makefile('test/foo', 'test')
That will set the target_prefix
in the generated Makefile to “test”. That, in turn, will create the following file tree when installed via the make install
command:
/path/to/ruby/sitearchdir/test/foo.so
It is recommended that you use this approach to generate your makefiles, instead of copying files around manually, because some third party libraries may depend on the target_prefix
being set properly.
The srcprefix
argument can be used to override the default source directory, i.e. the current directory. It is included as part of the VPATH
and added to the list of INCFLAGS
.
Yields the configuration part of the makefile to be generated, as an array of strings, if the block is given. The returned value will be used the new configuration part.
create_makefile('foo') {|conf| [ *conf, "MACRO_YOU_NEED = something", ] }
If “depend” file exist in the source directory, that content will be included in the generated makefile, with formatted by depend_rules
method.
Mirror the Prism.parse_failure?
API by using the serialization API.
Returns a clock resolution as determined by POSIX function clock_getres():
Process.clock_getres(:CLOCK_REALTIME) # => 1.0e-09
See Process.clock_gettime
for the values of clock_id
and unit
.
Examples:
Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :float_microsecond) # => 0.001 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :float_millisecond) # => 1.0e-06 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :float_second) # => 1.0e-09 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :microsecond) # => 0 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :millisecond) # => 0 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :nanosecond) # => 1 Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :second) # => 0
In addition to the values for unit
supported in Process.clock_gettime
, this method supports :hertz
, the integer number of clock ticks per second (which is the reciprocal of :float_second
):
Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) # => 100.0 Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :float_second) # => 0.01
Accuracy: Note that the returned resolution may be inaccurate on some platforms due to underlying bugs. Inaccurate resolutions have been reported for various clocks including :CLOCK_MONOTONIC
and :CLOCK_MONOTONIC_RAW
on Linux, macOS, BSD or AIX platforms, when using ARM processors, or when using virtualization.
foo => bar ^^^^^^^^^^
foo rescue bar ^^^^^^^^^^^^^^
Interpolate substitution vars in the arg (i.e. $(DEFFILE))
The line number in the source code where this AST’s text began.
The line number in the source code where this AST’s text ended.
Returns all tokens for the input script regardless the receiver node. Returns nil
if keep_tokens
is not enabled when parse method is called.
root = RubyVM::AbstractSyntaxTree.parse("x = 1 + 2", keep_tokens: true) root.all_tokens # => [[0, :tIDENTIFIER, "x", [1, 0, 1, 1]], [1, :tSP, " ", [1, 1, 1, 2]], ...] root.children[-1].all_tokens # => [[0, :tIDENTIFIER, "x", [1, 0, 1, 1]], [1, :tSP, " ", [1, 1, 1, 2]], ...]
The line number in the source code where this AST’s text began.
The line number in the source code where this AST’s text ended.
Returns a String
containing a shared secret computed from the other party’s public value.
This method is provided for backwards compatibility, and calls derive
internally.
pub_bn is a OpenSSL::BN
, not the DH
instance returned by DH#public_key
as that contains the DH
parameters only.