Results for: "slice"

No documentation available
No documentation available
No documentation available
No documentation available

See Thread::Mutex#sleep

Returns a 9-element array representing the parts of the URI formed from the string uri; each array element is a string or nil:

names = %w[scheme userinfo host port registry path opaque query fragment]
values = URI.split('https://john.doe@www.example.com:123/forum/questions/?tag=networking&order=newest#top')
names.zip(values)
# =>
[["scheme", "https"],
 ["userinfo", "john.doe"],
 ["host", "www.example.com"],
 ["port", "123"],
 ["registry", nil],
 ["path", "/forum/questions/"],
 ["opaque", nil],
 ["query", "tag=networking&order=newest"],
 ["fragment", "top"]]

Basically a wrapper for Process.spawn that:

The method does not wait for child processes to exit, so the caller must do so.

With no block given, returns a 2-element array containing:

Example:

last_stdout, wait_threads = Open3.pipeline_r('ls', 'grep R')
# => [#<IO:fd 5>, [#<Process::Waiter:0x000055e8de2f9898 dead>, #<Process::Waiter:0x000055e8de2f94b0 sleep>]]
puts last_stdout.read
wait_threads.each do |wait_thread|
  wait_thread.join
end

Output:

Rakefile
README.md

With a block given, calls the block with the stdout stream of the last child process, and an array of the wait processes:

Open3.pipeline_r('ls', 'grep R') do |last_stdout, wait_threads|
  puts last_stdout.read
  wait_threads.each do |wait_thread|
    wait_thread.join
  end
end

Output:

Rakefile
README.md

Like Process.spawn, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

If the first argument is a hash, it becomes leading argument env in each call to Process.spawn; see Execution Environment.

If the last argument is a hash, it becomes trailing argument options in each call to Process.spawn; see Execution Options.

Each remaining argument in cmds is one of:

See Argument command_line or exe_path.

Basically a wrapper for Process.spawn that:

The method does not wait for child processes to exit, so the caller must do so.

With no block given, returns a 2-element array containing:

Example:

last_stdout, wait_threads = Open3.pipeline_r('ls', 'grep R')
# => [#<IO:fd 5>, [#<Process::Waiter:0x000055e8de2f9898 dead>, #<Process::Waiter:0x000055e8de2f94b0 sleep>]]
puts last_stdout.read
wait_threads.each do |wait_thread|
  wait_thread.join
end

Output:

Rakefile
README.md

With a block given, calls the block with the stdout stream of the last child process, and an array of the wait processes:

Open3.pipeline_r('ls', 'grep R') do |last_stdout, wait_threads|
  puts last_stdout.read
  wait_threads.each do |wait_thread|
    wait_thread.join
  end
end

Output:

Rakefile
README.md

Like Process.spawn, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

If the first argument is a hash, it becomes leading argument env in each call to Process.spawn; see Execution Environment.

If the last argument is a hash, it becomes trailing argument options in each call to Process.spawn; see Execution Options.

Each remaining argument in cmds is one of:

See Argument command_line or exe_path.

Basically a wrapper for Process.spawn that:

The method does not wait for child processes to exit, so the caller must do so.

With no block given, returns a 2-element array containing:

Example:

first_stdin, wait_threads = Open3.pipeline_w('sort', 'cat -n')
# => [#<IO:fd 7>, [#<Process::Waiter:0x000055e8de928278 run>, #<Process::Waiter:0x000055e8de923e80 run>]]
first_stdin.puts("foo\nbar\nbaz")
first_stdin.close # Send EOF to sort.
wait_threads.each do |wait_thread|
  wait_thread.join
end

Output:

1 bar
2 baz
3 foo

With a block given, calls the block with the stdin stream of the first child process, and an array of the wait processes:

Open3.pipeline_w('sort', 'cat -n') do |first_stdin, wait_threads|
  first_stdin.puts("foo\nbar\nbaz")
  first_stdin.close # Send EOF to sort.
  wait_threads.each do |wait_thread|
    wait_thread.join
  end
end

Output:

1 bar
2 baz
3 foo

Like Process.spawn, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

If the first argument is a hash, it becomes leading argument env in each call to Process.spawn; see Execution Environment.

If the last argument is a hash, it becomes trailing argument options in each call to Process.spawn; see Execution Options.

Each remaining argument in cmds is one of:

See Argument command_line or exe_path.

Basically a wrapper for Process.spawn that:

The method does not wait for child processes to exit, so the caller must do so.

With no block given, returns a 2-element array containing:

Example:

first_stdin, wait_threads = Open3.pipeline_w('sort', 'cat -n')
# => [#<IO:fd 7>, [#<Process::Waiter:0x000055e8de928278 run>, #<Process::Waiter:0x000055e8de923e80 run>]]
first_stdin.puts("foo\nbar\nbaz")
first_stdin.close # Send EOF to sort.
wait_threads.each do |wait_thread|
  wait_thread.join
end

Output:

1 bar
2 baz
3 foo

With a block given, calls the block with the stdin stream of the first child process, and an array of the wait processes:

Open3.pipeline_w('sort', 'cat -n') do |first_stdin, wait_threads|
  first_stdin.puts("foo\nbar\nbaz")
  first_stdin.close # Send EOF to sort.
  wait_threads.each do |wait_thread|
    wait_thread.join
  end
end

Output:

1 bar
2 baz
3 foo

Like Process.spawn, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

If the first argument is a hash, it becomes leading argument env in each call to Process.spawn; see Execution Environment.

If the last argument is a hash, it becomes trailing argument options in each call to Process.spawn; see Execution Options.

Each remaining argument in cmds is one of:

See Argument command_line or exe_path.

Basically a wrapper for Process.spawn that:

Example:

wait_threads = Open3.pipeline('ls', 'grep R')
# => [#<Process::Status: pid 2139200 exit 0>, #<Process::Status: pid 2139202 exit 0>]

Output:

Rakefile
README.md

Like Process.spawn, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

If the first argument is a hash, it becomes leading argument env in each call to Process.spawn; see Execution Environment.

If the last argument is a hash, it becomes trailing argument options in each call to Process.spawn‘ see Execution Options.

Each remaining argument in cmds is one of:

See Argument command_line or exe_path.

Basically a wrapper for Process.spawn that:

Example:

wait_threads = Open3.pipeline('ls', 'grep R')
# => [#<Process::Status: pid 2139200 exit 0>, #<Process::Status: pid 2139202 exit 0>]

Output:

Rakefile
README.md

Like Process.spawn, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.

If the first argument is a hash, it becomes leading argument env in each call to Process.spawn; see Execution Environment.

If the last argument is a hash, it becomes trailing argument options in each call to Process.spawn‘ see Execution Options.

Each remaining argument in cmds is one of:

See Argument command_line or exe_path.

Splits a string into an array of tokens in the same way the UNIX Bourne shell does.

argv = Shellwords.split('here are "two words"')
argv #=> ["here", "are", "two words"]

Note, however, that this is not a command line parser. Shell metacharacters except for the single and double quotes and backslash are not treated as such.

argv = Shellwords.split('ruby my_prog.rb | less')
argv #=> ["ruby", "my_prog.rb", "|", "less"]

String#shellsplit is a shortcut for this function.

argv = 'here are "two words"'.shellsplit
argv #=> ["here", "are", "two words"]

Splits a string into an array of tokens in the same way the UNIX Bourne shell does.

argv = Shellwords.split('here are "two words"')
argv #=> ["here", "are", "two words"]

Note, however, that this is not a command line parser. Shell metacharacters except for the single and double quotes and backslash are not treated as such.

argv = Shellwords.split('ruby my_prog.rb | less')
argv #=> ["ruby", "my_prog.rb", "|", "less"]

String#shellsplit is a shortcut for this function.

argv = 'here are "two words"'.shellsplit
argv #=> ["here", "are", "two words"]
No documentation available

Returns the singleton instance.

No documentation available

SyntaxSuggest.valid? [Private]

Returns truthy if a given input source is valid syntax

SyntaxSuggest.valid?(<<~EOM) # => true
  def foo
  end
EOM

SyntaxSuggest.valid?(<<~EOM) # => false
  def foo
    def bar # Syntax error here
  end
EOM

You can also pass in an array of lines and they’ll be joined before evaluating

SyntaxSuggest.valid?(
  [
    "def foo\n",
    "end\n"
  ]
) # => true

SyntaxSuggest.valid?(
  [
    "def foo\n",
    "  def bar\n", # Syntax error here
    "end\n"
  ]
) # => false

As an FYI the CodeLine class instances respond to ‘to_s` so passing a CodeLine in as an object or as an array will convert it to it’s code representation.

Returns a 2-element array of the current (soft) limit and maximum (hard) limit for the given resource.

Argument resource specifies the resource whose limits are to be returned; see Process.setrlimit.

Each of the returned values cur_limit and max_limit is an integer; see Process.setrlimit.

Example:

Process.getrlimit(:CORE) # => [0, 18446744073709551615]

See Process.setrlimit.

Not available on all platforms.

Sets limits for the current process for the given resource to cur_limit (soft limit) and max_limit (hard limit); returns nil.

Argument resource specifies the resource whose limits are to be set; the argument may be given as a symbol, as a string, or as a constant beginning with Process::RLIMIT_ (e.g., :CORE, 'CORE', or Process::RLIMIT_CORE.

The resources available and supported are system-dependent, and may include (here expressed as symbols):

Arguments cur_limit and max_limit may be:

This example raises the soft limit of core size to the hard limit to try to make core dump possible:

Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])

Not available on all platforms.

Returns a list of signal names mapped to the corresponding underlying signal numbers.

Signal.list   #=> {"EXIT"=>0, "HUP"=>1, "INT"=>2, "QUIT"=>3, "ILL"=>4, "TRAP"=>5, "IOT"=>6, "ABRT"=>6, "FPE"=>8, "KILL"=>9, "BUS"=>7, "SEGV"=>11, "SYS"=>31, "PIPE"=>13, "ALRM"=>14, "TERM"=>15, "URG"=>23, "STOP"=>19, "TSTP"=>20, "CONT"=>18, "CHLD"=>17, "CLD"=>17, "TTIN"=>21, "TTOU"=>22, "IO"=>29, "XCPU"=>24, "XFSZ"=>25, "VTALRM"=>26, "PROF"=>27, "WINCH"=>28, "USR1"=>10, "USR2"=>12, "PWR"=>30, "POLL"=>29}

Compile a ImplicitRestNode node

Compile a SourceLineNode node

Dispatch enter and leave events for ImplicitRestNode nodes and continue walking the tree.

Dispatch enter and leave events for SourceLineNode nodes and continue walking the tree.

Search took: 4ms  ·  Total Results: 1351