Returns elements from self
; does not modify self
.
When a single Integer
argument index
is given, returns the element at offset index
:
a = [:foo, 'bar', 2] a[0] # => :foo a[2] # => 2 a # => [:foo, "bar", 2]
If index
is negative, counts relative to the end of self
:
a = [:foo, 'bar', 2] a[-1] # => 2 a[-2] # => "bar"
If index
is out of range, returns nil
.
When two Integer
arguments start
and length
are given, returns a new Array of size length
containing successive elements beginning at offset start
:
a = [:foo, 'bar', 2] a[0, 2] # => [:foo, "bar"] a[1, 2] # => ["bar", 2]
If start + length
is greater than self.length
, returns all elements from offset start
to the end:
a = [:foo, 'bar', 2] a[0, 4] # => [:foo, "bar", 2] a[1, 3] # => ["bar", 2] a[2, 2] # => [2]
If start == self.size
and length >= 0
, returns a new empty Array.
If length
is negative, returns nil
.
When a single Range
argument range
is given, treats range.min
as start
above and range.size
as length
above:
a = [:foo, 'bar', 2] a[0..1] # => [:foo, "bar"] a[1..2] # => ["bar", 2]
Special case: If range.start == a.size
, returns a new empty Array.
If range.end
is negative, calculates the end index from the end:
a = [:foo, 'bar', 2] a[0..-1] # => [:foo, "bar", 2] a[0..-2] # => [:foo, "bar"] a[0..-3] # => [:foo]
If range.start
is negative, calculates the start index from the end:
a = [:foo, 'bar', 2] a[-1..2] # => [2] a[-2..2] # => ["bar", 2] a[-3..2] # => [:foo, "bar", 2]
If range.start
is larger than the array size, returns nil
.
a = [:foo, 'bar', 2] a[4..1] # => nil a[4..0] # => nil a[4..-1] # => nil
When a single Enumerator::ArithmeticSequence
argument aseq
is given, returns an Array of elements corresponding to the indexes produced by the sequence.
a = ['--', 'data1', '--', 'data2', '--', 'data3'] a[(1..).step(2)] # => ["data1", "data2", "data3"]
Unlike slicing with range, if the start or the end of the arithmetic sequence is larger than array size, throws RangeError
.
a = ['--', 'data1', '--', 'data2', '--', 'data3'] a[(1..11).step(2)] # RangeError (((1..11).step(2)) out of range) a[(7..).step(2)] # RangeError (((7..).step(2)) out of range)
If given a single argument, and its type is not one of the listed, tries to convert it to Integer
, and raises if it is impossible:
a = [:foo, 'bar', 2] # Raises TypeError (no implicit conversion of Symbol into Integer): a[:foo]
Returns the substring of self
specified by the arguments. See examples at String Slices.
Equivalent to symbol.to_s[]
; see String#[]
.
Parses src
and return a string which was matched to pattern
. pattern
should be described as Regexp
.
require 'ripper' p Ripper.slice('def m(a) nil end', 'ident') #=> "m" p Ripper.slice('def m(a) nil end', '[ident lparen rparen]+') #=> "m(a)" p Ripper.slice("<<EOS\nstring\nEOS", 'heredoc_beg nl $(tstring_content*) heredoc_end', 1) #=> "string\n"
Returns a new Hash object containing the entries for the given keys
:
h = {foo: 0, bar: 1, baz: 2} h.slice(:baz, :foo) # => {:baz=>2, :foo=>0}
Any given keys
that are not found are ignored.
Returns a Hash
of the given ENV
names and their corresponding values:
ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2', 'bat' => '3') ENV.slice('foo', 'baz') # => {"foo"=>"0", "baz"=>"2"} ENV.slice('baz', 'foo') # => {"baz"=>"2", "foo"=>"0"}
Raises an exception if any of the names
is invalid (see Invalid Names and Values):
ENV.slice('foo', 'bar', :bat) # Raises TypeError (no implicit conversion of Symbol into String)
Calls the block with each successive disjoint n
-tuple of elements; returns self
:
a = [] (1..10).each_slice(3) {|tuple| a.push(tuple) } a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]] a = [] h = {foo: 0, bar: 1, baz: 2, bat: 3, bam: 4} h.each_slice(2) {|tuple| a.push(tuple) } a # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]], [[:bam, 4]]]
With no block given, returns an Enumerator
.
With argument pattern
, returns an enumerator that uses the pattern to partition elements into arrays (“slices”). An element begins a new slice if element === pattern
(or if it is the first element).
a = %w[foo bar fop for baz fob fog bam foy] e = a.slice_before(/ba/) # => #<Enumerator: ...> e.each {|array| p array }
Output:
["foo"] ["bar", "fop", "for"] ["baz", "fob", "fog"] ["bam", "foy"]
With a block, returns an enumerator that uses the block to partition elements into arrays. An element begins a new slice if its block return is a truthy value (or if it is the first element):
e = (1..20).slice_before {|i| i % 4 == 2 } # => #<Enumerator: ...> e.each {|array| p array }
Output:
[1] [2, 3, 4, 5] [6, 7, 8, 9] [10, 11, 12, 13] [14, 15, 16, 17] [18, 19, 20]
Other methods of the Enumerator
class and Enumerable
module, such as to_a
, map
, etc., are also usable.
For example, iteration over ChangeLog entries can be implemented as follows:
# iterate over ChangeLog entries. open("ChangeLog") { |f| f.slice_before(/\A\S/).each { |e| pp e } } # same as above. block is used instead of pattern argument. open("ChangeLog") { |f| f.slice_before { |line| /\A\S/ === line }.each { |e| pp e } }
“svn proplist -R” produces multiline output for each file. They can be chunked as follows:
IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f| f.lines.slice_before(/\AProp/).each { |lines| p lines } } #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"] # ["Properties on 'goruby.c':\n", " svn:eol-style\n"] # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"] # ["Properties on 'regparse.c':\n", " svn:eol-style\n"] # ...
If the block needs to maintain state over multiple elements, local variables can be used. For example, three or more consecutive increasing numbers can be squashed as follows (see chunk_while
for a better way):
a = [0, 2, 3, 4, 6, 7, 9] prev = a[0] p a.slice_before { |e| prev, prev2 = e, prev prev2 + 1 != e }.map { |es| es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}" }.join(",") #=> "0,2-4,6,7,9"
However local variables should be used carefully if the result enumerator is enumerated twice or more. The local variables should be initialized for each enumeration. Enumerator.new
can be used to do it.
# Word wrapping. This assumes all characters have same width. def wordwrap(words, maxwidth) Enumerator.new {|y| # cols is initialized in Enumerator.new. cols = 0 words.slice_before { |w| cols += 1 if cols != 0 cols += w.length if maxwidth < cols cols = w.length true else false end }.each {|ws| y.yield ws } } end text = (1..20).to_a.join(" ") enum = wordwrap(text.split(/\s+/), 10) puts "-"*10 enum.each { |ws| puts ws.join(" ") } # first enumeration. puts "-"*10 enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first. puts "-"*10 #=> ---------- # 1 2 3 4 5 # 6 7 8 9 10 # 11 12 13 # 14 15 16 # 17 18 19 # 20 # ---------- # 1 2 3 4 5 # 6 7 8 9 10 # 11 12 13 # 14 15 16 # 17 18 19 # 20 # ----------
mbox contains series of mails which start with Unix From line. So each mail can be extracted by slice before Unix From line.
# parse mbox open("mbox") { |f| f.slice_before { |line| line.start_with? "From " }.each { |mail| unix_from = mail.shift i = mail.index("\n") header = mail[0...i] body = mail[(i+1)..-1] body.pop if body.last == "\n" fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a p unix_from pp fields pp body } } # split mails in mbox (slice before Unix From line after an empty line) open("mbox") { |f| emp = true f.slice_before { |line| prevemp = emp emp = line == "\n" prevemp && line.start_with?("From ") }.each { |mail| mail.pop if mail.last == "\n" pp mail } }
Creates an enumerator for each chunked elements. The ends of chunks are defined by pattern and the block.
If pattern === elt
returns true
or the block returns true
for the element, the element is end of a chunk.
The ===
and block is called from the first element to the last element of enum.
The result enumerator yields the chunked elements as an array. So each
method can be called as follows:
enum.slice_after(pattern).each { |ary| ... } enum.slice_after { |elt| bool }.each { |ary| ... }
Other methods of the Enumerator
class and Enumerable
module, such as map
, etc., are also usable.
For example, continuation lines (lines end with backslash) can be concatenated as follows:
lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"] e = lines.slice_after(/(?<!\\)\n\z/) p e.to_a #=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]] p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last } #=>["foo\n", "barbaz\n", "\n", "qux\n"]
Creates an enumerator for each chunked elements. The beginnings of chunks are defined by the block.
This method splits each chunk using adjacent elements, elt_before and elt_after, in the receiver enumerator. This method split chunks between elt_before and elt_after where the block returns true
.
The block is called the length of the receiver enumerator minus one.
The result enumerator yields the chunked elements as an array. So each
method can be called as follows:
enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }
Other methods of the Enumerator
class and Enumerable
module, such as to_a
, map
, etc., are also usable.
For example, one-by-one increasing subsequence can be chunked as follows:
a = [1,2,4,9,10,11,12,15,16,19,20,21] b = a.slice_when {|i, j| i+1 != j } p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]] c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" } p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"] d = c.join(",") p d #=> "1,2,4,9-12,15,16,19-21"
Near elements (threshold: 6) in sorted array can be chunked as follows:
a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57] p a.slice_when {|i, j| 6 < j - i }.to_a #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]
Increasing (non-decreasing) subsequence can be chunked as follows:
a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5] p a.slice_when {|i, j| i > j }.to_a #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
Adjacent evens and odds can be chunked as follows: (Enumerable#chunk
is another way to do it.)
a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0] p a.slice_when {|i, j| i.even? != j.even? }.to_a #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows: (See Enumerable#chunk
to ignore empty lines.)
lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"] p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]
Enumerable#chunk_while
does the same, except splitting when the block returns false
instead of true
.
Produce another IO::Buffer
which is a slice (or view into) the current one starting at offset
bytes and going for length
bytes.
The slicing happens without copying of memory, and the slice keeps being associated with the original buffer’s source (string, or file), if any.
If the offset is not given, it will be zero. If the offset is negative, it will raise an ArgumentError
.
If the length is not given, the slice will be as long as the original buffer minus the specified offset. If the length is negative, it will raise an ArgumentError
.
Raises RuntimeError
if the offset+length
is out of the current buffer’s bounds.
string = 'test' buffer = IO::Buffer.for(string) slice = buffer.slice # => # #<IO::Buffer 0x0000000108338e68+4 SLICE> # 0x00000000 74 65 73 74 test buffer.slice(2) # => # #<IO::Buffer 0x0000000108338e6a+2 SLICE> # 0x00000000 73 74 st slice = buffer.slice(1, 2) # => # #<IO::Buffer 0x00007fc3d34ebc49+2 SLICE> # 0x00000000 65 73 es # Put "o" into 0s position of the slice slice.set_string('o', 0) slice # => # #<IO::Buffer 0x00007fc3d34ebc49+2 SLICE> # 0x00000000 6f 73 os # it is also visible at position 1 of the original buffer buffer # => # #<IO::Buffer 0x00007fc3d31e2d80+4 SLICE> # 0x00000000 74 6f 73 74 tost # ...and original string string # => tost
Slice the location of the node from the source.
Perform a byteslice on the source code using the given byte offset and byte length.
The source code that this location represents.
Like Enumerable#slice_before
, but chains operation to be lazy-evaluated.
Like Enumerable#slice_after
, but chains operation to be lazy-evaluated.
Like Enumerable#slice_when
, but chains operation to be lazy-evaluated.
The content of the line where this location starts before this location.
define UnicodeNormalize module here so that we don’t have to look it up
Potentially raised when a specification is validated.
Enumerator::ArithmeticSequence
is a subclass of Enumerator
, that is a representation of sequences of numbers with common difference. Instances of this class can be generated by the Range#step
and Numeric#step
methods.
The class can be used for slicing Array
(see Array#slice
) or custom collections.
Device used for logging messages.