Unlinks (deletes) the file from the filesystem. One should always unlink the file after using it, as is explained in the “Explicit close” good practice section in the Tempfile
overview:
file = Tempfile.new('foo') begin # ...do something with file... ensure file.close file.unlink # deletes the temp file end
On POSIX systems it’s possible to unlink a file before closing it. This practice is explained in detail in the Tempfile
overview (section “Unlink after creation”); please refer there for more information.
However, unlink-before-close may not be supported on non-POSIX operating systems. Microsoft Windows is the most notable case: unlinking a non-closed file will result in an error, which this method will silently ignore. If you want to practice unlink-before-close whenever possible, then you should write code like this:
file = Tempfile.new('foo') file.unlink # On Windows this silently fails. begin # ... do something with file ... ensure file.close! # Closes the file handle. If the file wasn't unlinked # because #unlink failed, then this method will attempt # to do so again. end
Returns the bound receiver of the method object.
(1..3).method(:map).receiver # => 1..3
Receive a message from the incoming port of the current ractor (which was sent there by send
from another ractor).
r = Ractor.new do v1 = Ractor.receive puts "Received: #{v1}" end r.send('message1') r.take # Here will be printed: "Received: message1"
Alternatively, the private instance method receive
may be used:
r = Ractor.new do v1 = receive puts "Received: #{v1}" end r.send('message1') r.take # This prints: "Received: message1"
The method blocks if the queue is empty.
r = Ractor.new do puts "Before first receive" v1 = Ractor.receive puts "Received: #{v1}" v2 = Ractor.receive puts "Received: #{v2}" end wait puts "Still not received" r.send('message1') wait puts "Still received only one" r.send('message2') r.take
Output:
Before first receive Still not received Received: message1 Still received only one Received: message2
If close_incoming
was called on the ractor, the method raises Ractor::ClosedError
if there are no more messages in the incoming queue:
Ractor.new do close_incoming receive end wait # in `receive': The incoming port is already closed => #<Ractor:#2 test.rb:1 running> (Ractor::ClosedError)
same as Ractor.receive
Returns an array of all existing Thread
objects that belong to this group.
ThreadGroup::Default.list #=> [#<Thread:0x401bdf4c run>]
Returns an array of Thread
objects for all threads that are either runnable or stopped.
Thread.new { sleep(200) } Thread.new { 1000000.times {|i| i*i } } Thread.new { Thread.stop } Thread.list.each {|t| p t}
This will produce:
#<Thread:0x401b3e84 sleep> #<Thread:0x401b3f38 run> #<Thread:0x401b3fb0 sleep> #<Thread:0x401bdf4c run>
Returns true
if thr
is running or sleeping.
thr = Thread.new { } thr.join #=> #<Thread:0x401b3fb0 dead> Thread.current.alive? #=> true thr.alive? #=> false
Returns the current backtrace of the target thread.
A convenience method for TracePoint.new
, that activates the trace automatically.
trace = TracePoint.trace(:call) { |tp| [tp.lineno, tp.event] } #=> #<TracePoint:enabled> trace.enabled? #=> true
Line number of the event
Equivalent to method Kernel#gets
, except that it raises an exception if called at end-of-stream:
$ cat t.txt | ruby -e "p readlines; readline" ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] in `readline': end of file reached (EOFError)
Optional keyword argument chomp
specifies whether line separators are to be omitted.
Returns an array containing the lines returned by calling Kernel#gets
until the end-of-stream is reached; (see Line IO).
With only string argument sep
given, returns the remaining lines as determined by line separator sep
, or nil
if none; see Line Separator:
# Default separator. $ cat t.txt | ruby -e "p readlines" ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] # Specified separator. $ cat t.txt | ruby -e "p readlines 'li'" ["First li", "ne\nSecond li", "ne\n\nFourth li", "ne\nFifth li", "ne\n"] # Get-all separator. $ cat t.txt | ruby -e "p readlines nil" ["First line\nSecond line\n\nFourth line\nFifth line\n"] # Get-paragraph separator. $ cat t.txt | ruby -e "p readlines ''" ["First line\nSecond line\n\n", "Fourth line\nFifth line\n"]
With only integer argument limit
given, limits the number of bytes in the line; see Line Limit:
$cat t.txt | ruby -e "p readlines 10" ["First line", "\n", "Second lin", "e\n", "\n", "Fourth lin", "e\n", "Fifth line", "\n"] $cat t.txt | ruby -e "p readlines 11" ["First line\n", "Second line", "\n", "\n", "Fourth line", "\n", "Fifth line\n"] $cat t.txt | ruby -e "p readlines 12" ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
With arguments sep
and limit
given, combines the two behaviors; see Line Separator and Line Limit.
Optional keyword argument chomp
specifies whether line separators are to be omitted:
$ cat t.txt | ruby -e "p readlines(chomp: true)" ["First line", "Second line", "", "Fourth line", "Fifth line"]
Optional keyword arguments enc_opts
specify encoding options; see Encoding options.
Suspends execution of the current thread for the number of seconds specified by numeric argument secs
, or forever if secs
is nil
; returns the integer number of seconds suspended (rounded).
Time.new # => 2008-03-08 19:56:19 +0900 sleep 1.2 # => 1 Time.new # => 2008-03-08 19:56:20 +0900 sleep 1.9 # => 2 Time.new # => 2008-03-08 19:56:22 +0900
Returns an object formed from operands via either:
A method named by symbol
.
A block to which each operand is passed.
With method-name argument symbol
, combines operands using the method:
# Sum, without initial_operand. (1..4).inject(:+) # => 10 # Sum, with initial_operand. (1..4).inject(10, :+) # => 20
With a block, passes each operand to the block:
# Sum of squares, without initial_operand. (1..4).inject {|sum, n| sum + n*n } # => 30 # Sum of squares, with initial_operand. (1..4).inject(2) {|sum, n| sum + n*n } # => 32
Operands
If argument initial_operand
is not given, the operands for inject
are simply the elements of self
. Example calls and their operands:
(1..4).inject(:+)
[1, 2, 3, 4]
.
(1...4).inject(:+)
[1, 2, 3]
.
('a'..'d').inject(:+)
['a', 'b', 'c', 'd']
.
('a'...'d').inject(:+)
['a', 'b', 'c']
.
Examples with first operand (which is self.first
) of various types:
# Integer. (1..4).inject(:+) # => 10 # Float. [1.0, 2, 3, 4].inject(:+) # => 10.0 # Character. ('a'..'d').inject(:+) # => "abcd" # Complex. [Complex(1, 2), 3, 4].inject(:+) # => (8+2i)
If argument initial_operand
is given, the operands for inject
are that value plus the elements of self
. Example calls their operands:
(1..4).inject(10, :+)
[10, 1, 2, 3, 4]
.
(1...4).inject(10, :+)
[10, 1, 2, 3]
.
('a'..'d').inject('e', :+)
['e', 'a', 'b', 'c', 'd']
.
('a'...'d').inject('e', :+)
['e', 'a', 'b', 'c']
.
Examples with initial_operand
of various types:
# Integer. (1..4).inject(2, :+) # => 12 # Float. (1..4).inject(2.0, :+) # => 12.0 # String. ('a'..'d').inject('foo', :+) # => "fooabcd" # Array. %w[a b c].inject(['x'], :push) # => ["x", "a", "b", "c"] # Complex. (1..4).inject(Complex(2, 2), :+) # => (12+2i)
Combination by Given Method
If the method-name argument symbol
is given, the operands are combined by that method:
The first and second operands are combined.
That result is combined with the third operand.
That result is combined with the fourth operand.
And so on.
The return value from inject
is the result of the last combination.
This call to inject
computes the sum of the operands:
(1..4).inject(:+) # => 10
Examples with various methods:
# Integer addition. (1..4).inject(:+) # => 10 # Integer multiplication. (1..4).inject(:*) # => 24 # Character range concatenation. ('a'..'d').inject('', :+) # => "abcd" # String array concatenation. %w[foo bar baz].inject('', :+) # => "foobarbaz" # Hash update. h = [{foo: 0, bar: 1}, {baz: 2}, {bat: 3}].inject(:update) h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3} # Hash conversion to nested arrays. h = {foo: 0, bar: 1}.inject([], :push) h # => [[:foo, 0], [:bar, 1]]
Combination by Given Block
If a block is given, the operands are passed to the block:
The first call passes the first and second operands.
The second call passes the result of the first call, along with the third operand.
The third call passes the result of the second call, along with the fourth operand.
And so on.
The return value from inject
is the return value from the last block call.
This call to inject
gives a block that writes the memo and element, and also sums the elements:
(1..4).inject do |memo, element| p "Memo: #{memo}; element: #{element}" memo + element end # => 10
Output:
"Memo: 1; element: 2" "Memo: 3; element: 3" "Memo: 6; element: 4"
Returns the number of online processors.
The result is intended as the number of processes to use all available processors.
This method is implemented using:
sched_getaffinity(): Linux
sysconf(_SC_NPROCESSORS_ONLN): GNU/Linux, NetBSD, FreeBSD, OpenBSD, DragonFly BSD, OpenIndiana, Mac OS X, AIX
Example:
require 'etc' p Etc.nprocessors #=> 4
The result might be smaller number than physical cpus especially when ruby process is bound to specific cpus. This is intended for getting better parallel processing.
Example: (Linux)
linux$ taskset 0x3 ./ruby -retc -e "p Etc.nprocessors" #=> 2
Encodes string using String.encode
.
Returns the facility number used in the last call to open()
Returns self, for backward compatibility.
Returns true
if filepath
points to a symbolic link, false
otherwise:
symlink = File.symlink('t.txt', 'symlink') File.symlink?('symlink') # => true File.symlink?('t.txt') # => false
Returns true
if the named file has the sticky bit set.
file_name can be an IO
object.
Returns true
if the named files are identical.
file_1 and file_2 can be an IO
object.
open("a", "w") {} p File.identical?("a", "a") #=> true p File.identical?("a", "./a") #=> true File.link("a", "b") p File.identical?("a", "b") #=> true File.symlink("a", "c") p File.identical?("a", "c") #=> true open("d", "w") {} p File.identical?("a", "d") #=> false
Returns an Array
of sources to fetch remote gems from. Uses default_sources
if the sources list is empty.
Need to be able to set the sources without calling Gem.sources
.replace since that would cause an infinite loop.
DOC: This comment is not documentation about the method itself, it’s more of a code comment about the implementation.