When there is an invalid block with a keyword missing an end right before another end, it is unclear where which keyword is missing the end
Take this example:
class Dog # 1 def bark # 2 puts "woof" # 3 end # 4
However due to github.com/ruby/syntax_suggest/issues/32 the problem line will be identified as:
> class Dog # 1
Because lines 2, 3, and 4 are technically valid code and are expanded first, deemed valid, and hidden. We need to un-hide the matching end line 4. Also work backwards and if there’s a mis-matched keyword, show it too
Returns a new Array whose elements are the elements of self
at the given Integer or Range indexes
.
For each positive index
, returns the element at offset index
:
a = [:foo, 'bar', 2] a.values_at(0, 2) # => [:foo, 2] a.values_at(0..1) # => [:foo, "bar"]
The given indexes
may be in any order, and may repeat:
a = [:foo, 'bar', 2] a.values_at(2, 0, 1, 0, 2) # => [2, :foo, "bar", :foo, 2] a.values_at(1, 0..2) # => ["bar", :foo, "bar", 2]
Assigns nil
for an index
that is too large:
a = [:foo, 'bar', 2] a.values_at(0, 3, 1, 3) # => [:foo, nil, "bar", nil]
Returns a new empty Array if no arguments given.
For each negative index
, counts backward from the end of the array:
a = [:foo, 'bar', 2] a.values_at(-1, -3) # => [2, :foo]
Assigns nil
for an index
that is too small:
a = [:foo, 'bar', 2] a.values_at(0, -5, 1, -6, 2) # => [:foo, nil, "bar", nil, 2]
The given indexes
may have a mixture of signs:
a = [:foo, 'bar', 2] a.values_at(0, -2, 1, -1) # => [:foo, "bar", "bar", 2]
Deletes an element from self
, per the given Integer index
.
When index
is non-negative, deletes the element at offset index
:
a = [:foo, 'bar', 2] a.delete_at(1) # => "bar" a # => [:foo, 2]
If index is too large, returns nil
.
When index
is negative, counts backward from the end of the array:
a = [:foo, 'bar', 2] a.delete_at(-2) # => "bar" a # => [:foo, 2]
If index
is too small (far from zero), returns nil.
Returns the number of bits of the value of int
.
“Number of bits” means the bit position of the highest bit which is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), zero is returned.
I.e. this method returns ceil(log2(int < 0 ? -int : int+1)).
(-2**1000-1).bit_length #=> 1001 (-2**1000).bit_length #=> 1000 (-2**1000+1).bit_length #=> 1000 (-2**12-1).bit_length #=> 13 (-2**12).bit_length #=> 12 (-2**12+1).bit_length #=> 12 -0x101.bit_length #=> 9 -0x100.bit_length #=> 8 -0xff.bit_length #=> 8 -2.bit_length #=> 1 -1.bit_length #=> 0 0.bit_length #=> 0 1.bit_length #=> 1 0xff.bit_length #=> 8 0x100.bit_length #=> 9 (2**12-1).bit_length #=> 12 (2**12).bit_length #=> 13 (2**12+1).bit_length #=> 13 (2**1000-1).bit_length #=> 1000 (2**1000).bit_length #=> 1001 (2**1000+1).bit_length #=> 1001
This method can be used to detect overflow in Array#pack
as follows:
if n.bit_length < 32 [n].pack("l") # no overflow else raise "overflow" end
Returns an array of the grapheme clusters in self
(see Unicode Grapheme Cluster Boundaries):
s = "\u0061\u0308-pqr-\u0062\u0308-xyz-\u0063\u0308" # => "ä-pqr-b̈-xyz-c̈" s.grapheme_clusters # => ["ä", "-", "p", "q", "r", "-", "b̈", "-", "x", "y", "z", "-", "c̈"]
Returns whether self
starts with any of the given string_or_regexp
.
Matches patterns against the beginning of self
. For each given string_or_regexp
, the pattern is:
string_or_regexp
itself, if it is a Regexp
.
Regexp.quote(string_or_regexp)
, if string_or_regexp
is a string.
Returns true
if any pattern matches the beginning, false
otherwise:
'hello'.start_with?('hell') # => true 'hello'.start_with?(/H/i) # => true 'hello'.start_with?('heaven', 'hell') # => true 'hello'.start_with?('heaven', 'paradise') # => false 'тест'.start_with?('т') # => true 'こんにちは'.start_with?('こ') # => true
Related: String#end_with?
.
Returns whether self
ends with any of the given strings
.
Returns true
if any given string matches the end, false
otherwise:
'hello'.end_with?('ello') #=> true 'hello'.end_with?('heaven', 'ello') #=> true 'hello'.end_with?('heaven', 'paradise') #=> false 'тест'.end_with?('т') # => true 'こんにちは'.end_with?('は') # => true
Related: String#start_with?
.
Returns the next-larger representable Float.
These examples show the internally stored values (64-bit hexadecimal) for each Float f
and for the corresponding f.next_float
:
f = 0.0 # 0x0000000000000000 f.next_float # 0x0000000000000001 f = 0.01 # 0x3f847ae147ae147b f.next_float # 0x3f847ae147ae147c
In the remaining examples here, the output is shown in the usual way (result to_s
):
0.01.next_float # => 0.010000000000000002 1.0.next_float # => 1.0000000000000002 100.0.next_float # => 100.00000000000001 f = 0.01 (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }
Output:
0 0x1.47ae147ae147bp-7 0.01 1 0x1.47ae147ae147cp-7 0.010000000000000002 2 0x1.47ae147ae147dp-7 0.010000000000000004 3 0x1.47ae147ae147ep-7 0.010000000000000005 f = 0.0; 100.times { f += 0.1 } f # => 9.99999999999998 # should be 10.0 in the ideal world. 10-f # => 1.9539925233402755e-14 # the floating point error. 10.0.next_float-10 # => 1.7763568394002505e-15 # 1 ulp (unit in the last place). (10-f)/(10.0.next_float-10) # => 11.0 # the error is 11 ulp. (10-f)/(10*Float::EPSILON) # => 8.8 # approximation of the above. "%a" % 10 # => "0x1.4p+3" "%a" % f # => "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
Related: Float#prev_float
Returns the next-smaller representable Float.
These examples show the internally stored values (64-bit hexadecimal) for each Float f
and for the corresponding f.pev_float
:
f = 5e-324 # 0x0000000000000001 f.prev_float # 0x0000000000000000 f = 0.01 # 0x3f847ae147ae147b f.prev_float # 0x3f847ae147ae147a
In the remaining examples here, the output is shown in the usual way (result to_s
):
0.01.prev_float # => 0.009999999999999998 1.0.prev_float # => 0.9999999999999999 100.0.prev_float # => 99.99999999999999 f = 0.01 (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.prev_float }
Output:
0 0x1.47ae147ae147bp-7 0.01 1 0x1.47ae147ae147ap-7 0.009999999999999998 2 0x1.47ae147ae1479p-7 0.009999999999999997 3 0x1.47ae147ae1478p-7 0.009999999999999995
Related: Float#next_float
.
Like backtrace
, but returns each line of the execution stack as a Thread::Backtrace::Location
. Accepts the same arguments as backtrace
.
f = Fiber.new { Fiber.yield } f.resume loc = f.backtrace_locations.first loc.label #=> "yield" loc.path #=> "test.rb" loc.lineno #=> 1
Returns default external encoding.
The default external encoding is used by default for strings created from the following locations:
File
data read from disk
SDBM
While strings created from these locations will have this encoding, the encoding may not be valid. Be sure to check String#valid_encoding?
.
File
data written to disk will be transcoded to the default external encoding when written, if default_internal
is not nil.
The default external encoding is initialized by the -E option. If -E isn’t set, it is initialized to UTF-8 on Windows and the locale on other operating systems.
Sets default external encoding. You should not set Encoding::default_external
in ruby code as strings created before changing the value may have a different encoding from strings created after the value was changed., instead you should use ruby -E
to invoke ruby with the correct default_external.
See Encoding::default_external
for information on how the default external encoding is used.
Returns default internal encoding. Strings will be transcoded to the default internal encoding in the following places if the default internal encoding is not nil:
File
data read from disk
Strings returned from Readline
Strings returned from SDBM
Values from ENV
Values in ARGV including $PROGRAM_NAME
Additionally String#encode
and String#encode!
use the default internal encoding if no encoding is given.
The script encoding (__ENCODING__), not default_internal
, is used as the encoding of created strings.
Encoding::default_internal
is initialized with -E option or nil otherwise.
Sets default internal encoding or removes default internal encoding when passed nil. You should not set Encoding::default_internal
in ruby code as strings created before changing the value may have a different encoding from strings created after the change. Instead you should use ruby -E
to invoke ruby with the correct default_internal.
See Encoding::default_internal
for information on how the default internal encoding is used.
Iterates the given block for each element with an index, which starts from offset
. If no block is given, returns a new Enumerator
that includes the index, starting from offset
offset
the starting index to use
Iterates the given block for each element with an arbitrary object, obj
, and returns obj
If no block is given, returns a new Enumerator
.
to_three = Enumerator.new do |y| 3.times do |x| y << x end end to_three_with_string = to_three.with_object("foo") to_three_with_string.each do |x,string| puts "#{string}: #{x}" end # => foo: 0 # => foo: 1 # => foo: 2
Convert an object to YAML
. See Psych.dump
for more information on the available options
.
Processes a string returned by message
.
It may add the class name of the exception to the end of the first line. Also, when highlight
keyword is true, it adds ANSI escape sequences to make the message bold.
If you override this method, it must be tolerant for unknown keyword arguments. All keyword arguments passed to full_message
are delegated to this method.
This method is overridden by did_you_mean and error_highlight to add their information.
A user-defined exception class can also define their own detailed_message
method to add supplemental information. When highlight
is true, it can return a string containing escape sequences, but use widely-supported ones. It is recommended to limit the following codes:
Reset (\e[0m
)
Bold (\e[1m
)
Underline (\e[4m
)
Foreground color except white and black
Red (\e[31m
)
Green (\e[32m
)
Yellow (\e[33m
)
Blue (\e[34m
)
Magenta (\e[35m
)
Cyan (\e[36m
)
Use escape sequences carefully even if highlight
is true. Do not use escape sequences to express essential information; the message should be readable even if all escape sequences are ignored.
Returns formatted string of exception. The returned string is formatted using the same format that Ruby uses when printing an uncaught exceptions to stderr.
If highlight is true
the default error handler will send the messages to a tty.
order must be either of :top
or :bottom
, and places the error message and the innermost backtrace come at the top or the bottom.
The default values of these options depend on $stderr
and its tty?
at the timing of a call.
Returns any backtrace associated with the exception. This method is similar to Exception#backtrace
, but the backtrace is an array of Thread::Backtrace::Location
.
This method is not affected by Exception#set_backtrace()
.