Returns the destination encoding as an encoding object.
Returns the destination encoding as an encoding object.
Returns the destination encoding as an Encoding
object.
Returns the index of the last element for which object == element
.
When argument object
is given but no block, returns the index of the last such element found:
a = [:foo, 'bar', 2, 'bar'] a.rindex('bar') # => 3
Returns nil
if no such object found.
When a block is given but no argument, calls the block with each successive element; returns the index of the last element for which the block returns a truthy value:
a = [:foo, 'bar', 2, 'bar'] a.rindex {|element| element == 'bar' } # => 3
Returns nil
if the block never returns a truthy value.
When neither an argument nor a block is given, returns a new Enumerator:
a = [:foo, 'bar', 2, 'bar'] e = a.rindex e # => #<Enumerator: [:foo, "bar", 2, "bar"]:rindex> e.each {|element| element == 'bar' } # => 3
Related: index
.
Returns 1
if cmp
‘s real or imaginary part is an infinite number, otherwise returns nil
.
For example: (1+1i).infinite? #=> nil (Float::INFINITY + 1i).infinite? #=> 1
Returns nil
, -1, or 1 depending on whether the value is finite, -Infinity
, or +Infinity
.
Returns:
1, if self
is Infinity
.
-1 if self
is -Infinity
.
nil
, otherwise.
Examples:
f = 1.0/0.0 # => Infinity f.infinite? # => 1 f = -1.0/0.0 # => -Infinity f.infinite? # => -1 f = 1.0 # => 1.0 f.infinite? # => nil f = 0.0/0.0 # => NaN f.infinite? # => nil
Forces the fiber to be blocking for the duration of the block. Returns the result of the block.
See the “Non-blocking fibers” section in class docs for details.
Returns true
if fiber
is blocking and false
otherwise. Fiber
is non-blocking if it was created via passing blocking: false
to Fiber.new
, or via Fiber.schedule
.
Note that, even if the method returns false
, the fiber behaves differently only if Fiber.scheduler
is set in the current thread.
See the “Non-blocking fibers” section in class docs for details.
Returns false
if the current fiber is non-blocking. Fiber
is non-blocking if it was created via passing blocking: false
to Fiber.new
, or via Fiber.schedule
.
If the current Fiber
is blocking, the method returns 1. Future developments may allow for situations where larger integers could be returned.
Note that, even if the method returns false
, Fiber
behaves differently only if Fiber.scheduler
is set in the current thread.
See the “Non-blocking fibers” section in class docs for details.
Returns an array containing all of the filenames in the given directory. Will raise a SystemCallError
if the named directory doesn’t exist.
The optional encoding keyword argument specifies the encoding of the directory. If not specified, the filesystem encoding is used.
Dir.entries("testdir") #=> [".", "..", "config.h", "main.rb"]
Import class refinements from module into the current class or module definition.
Returns nil, -1, or +1 depending on whether the value is finite, -Infinity, or +Infinity.
Synonym for $stdin.
Print an argument or list of arguments to the default output stream
cgi = CGI.new cgi.print # default: cgi.print == $DEFAULT_OUTPUT.print
Returns a hash of values parsed from string
according to the given format
:
Date._strptime('2001-02-03', '%Y-%m-%d') # => {:year=>2001, :mon=>2, :mday=>3}
For other formats, see Formats for Dates and Times. (Unlike Date.strftime
, does not support flags and width.)
See also strptime(3).
Related: Date.strptime
(returns a Date object).
Returns a new Date object with values parsed from string
, according to the given format
:
Date.strptime('2001-02-03', '%Y-%m-%d') # => #<Date: 2001-02-03> Date.strptime('03-02-2001', '%d-%m-%Y') # => #<Date: 2001-02-03> Date.strptime('2001-034', '%Y-%j') # => #<Date: 2001-02-03> Date.strptime('2001-W05-6', '%G-W%V-%u') # => #<Date: 2001-02-03> Date.strptime('2001 04 6', '%Y %U %w') # => #<Date: 2001-02-03> Date.strptime('2001 05 6', '%Y %W %u') # => #<Date: 2001-02-03> Date.strptime('sat3feb01', '%a%d%b%y') # => #<Date: 2001-02-03>
For other formats, see Formats for Dates and Times. (Unlike Date.strftime
, does not support flags and width.)
See argument start.
See also strptime(3).
Related: Date._strptime
(returns a hash).
Returns a string representation of the date in self
, formatted according the given format
:
Date.new(2001, 2, 3).strftime # => "2001-02-03"
For other formats, see Formats for Dates and Times.
Returns false
Parses the given representation of date and time with the given template, and returns a hash of parsed elements. _strptime does not support specification of flags and width unlike strftime.
See also strptime(3) and strftime
.
Parses the given representation of date and time with the given template, and creates a DateTime
object. strptime does not support specification of flags and width unlike strftime.
DateTime.strptime('2001-02-03T04:05:06+07:00', '%Y-%m-%dT%H:%M:%S%z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('03-02-2001 04:05:06 PM', '%d-%m-%Y %I:%M:%S %p') #=> #<DateTime: 2001-02-03T16:05:06+00:00 ...> DateTime.strptime('2001-W05-6T04:05:06+07:00', '%G-W%V-%uT%H:%M:%S%z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('2001 04 6 04 05 06 +7', '%Y %U %w %H %M %S %z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('2001 05 6 04 05 06 +7', '%Y %W %u %H %M %S %z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('-1', '%s') #=> #<DateTime: 1969-12-31T23:59:59+00:00 ...> DateTime.strptime('-1000', '%Q') #=> #<DateTime: 1969-12-31T23:59:59+00:00 ...> DateTime.strptime('sat3feb014pm+7', '%a%d%b%y%H%p%z') #=> #<DateTime: 2001-02-03T16:00:00+07:00 ...>
See also strptime(3) and strftime
.
Returns a string representation of self
, formatted according the given +format:
DateTime.now.strftime # => "2022-07-01T11:03:19-05:00"
For other formats, see Formats for Dates and Times.
Works similar to parse
except that instead of using a heuristic to detect the format of the input string, you provide a second argument that describes the format of the string.
If a block is given, the year described in date
is converted by the block. For example:
Time.strptime(...) {|y| y < 100 ? (y >= 69 ? y + 1900 : y + 2000) : y}
Below is a list of the formatting options:
The abbreviated weekday name (“Sun”)
The full weekday name (“Sunday”)
The abbreviated month name (“Jan”)
The full month name (“January”)
The preferred local date and time representation
Century (20 in 2009)
Day of the month (01..31)
Date
(%m/%d/%y)
Day of the month, blank-padded ( 1..31)
Equivalent to %Y-%m-%d (the ISO 8601 date format)
The last two digits of the commercial year
The week-based year according to ISO-8601 (week 1 starts on Monday and includes January 4)
Equivalent to %b
Hour of the day, 24-hour clock (00..23)
Hour of the day, 12-hour clock (01..12)
Day of the year (001..366)
hour, 24-hour clock, blank-padded ( 0..23)
hour, 12-hour clock, blank-padded ( 0..12)
Millisecond of the second (000..999)
Month of the year (01..12)
Minute of the hour (00..59)
Newline (n)
Fractional seconds digits
Meridian indicator (“AM” or “PM”)
Meridian indicator (“am” or “pm”)
time, 12-hour (same as %I:%M:%S %p)
time, 24-hour (%H:%M)
Number of seconds since 1970-01-01 00:00:00 UTC.
Second of the minute (00..60)
Tab character (t)
time, 24-hour (%H:%M:%S)
Day of the week as a decimal, Monday being 1. (1..7)
Week number of the current year, starting with the first Sunday as the first day of the first week (00..53)
VMS date (%e-%b-%Y)
Week number of year according to ISO 8601 (01..53)
Week number of the current year, starting with the first Monday as the first day of the first week (00..53)
Day of the week (Sunday is 0, 0..6)
Preferred representation for the date alone, no time
Preferred representation for the time alone, no date
Year without a century (00..99)
Year which may include century, if provided
Time
zone as hour offset from UTC (e.g. +0900)
Time
zone name
Literal “%” character
date(1) (%a %b %e %H:%M:%S %Z %Y)
require 'time' Time.strptime("2000-10-31", "%Y-%m-%d") #=> 2000-10-31 00:00:00 -0500
You must require ‘time’ to use this method.