Module Math provides methods for basic trigonometric, logarithmic, and transcendental functions, and for extracting roots.
You can write its constants and method calls thus:
Math::PI # => 3.141592653589793 Math::E # => 2.718281828459045 Math.sin(0.0) # => 0.0 Math.cos(0.0) # => 1.0
If you include module Math, you can write simpler forms:
include Math PI # => 3.141592653589793 E # => 2.718281828459045 sin(0.0) # => 0.0 cos(0.0) # => 1.0
For simplicity, the examples here assume:
include Math INFINITY = Float::INFINITY
The domains and ranges for the methods are denoted by open or closed intervals, using, respectively, parentheses or square brackets:
-
An open interval does not include the endpoints:
(-INFINITY, INFINITY)
-
A closed interval includes the endpoints:
[-1.0, 1.0]
-
A half-open interval includes one endpoint, but not the other:
[1.0, INFINITY)
Many values returned by Math methods are numerical approximations. This is because many such values are, in mathematics, of infinite precision, while in numerical computation the precision is finite.
Thus, in mathematics, cos(π/2) is exactly zero, but in our computation cos(PI/2)
is a number very close to zero:
cos(PI/2) # => 6.123031769111886e-17
For very large and very small returned values, we have added formatted numbers for clarity:
tan(PI/2) # => 1.633123935319537e+16 # 16331239353195370.0 tan(PI) # => -1.2246467991473532e-16 # -0.0000000000000001
See class Float
for the constants that affect Ruby’s floating-point arithmetic.
What’s Here
Trigonometric Functions
-
::cos
: Returns the cosine of the given argument. -
::sin
: Returns the sine of the given argument. -
::tan
: Returns the tangent of the given argument.
Inverse Trigonometric Functions
-
::acos
: Returns the arc cosine of the given argument. -
::asin
: Returns the arc sine of the given argument. -
::atan
: Returns the arc tangent of the given argument. -
::atan2
: Returns the arg tangent of two given arguments.
Hyperbolic Trigonometric Functions
-
::cosh
: Returns the hyperbolic cosine of the given argument. -
::sinh
: Returns the hyperbolic sine of the given argument. -
::tanh
: Returns the hyperbolic tangent of the given argument.
Inverse Hyperbolic Trigonometric Functions
-
::acosh
: Returns the inverse hyperbolic cosine of the given argument. -
::asinh
: Returns the inverse hyperbolic sine of the given argument. -
::atanh
: Returns the inverse hyperbolic tangent of the given argument.
Exponentiation and Logarithmic Functions
-
::exp
: Returns the value of a given value raised to a given power. -
::log
: Returns the logarithm of a given value in a given base. -
::log10
: Returns the base 10 logarithm of the given argument. -
::log2
: Returns the base 2 logarithm of the given argument.
Fraction and Exponent Functions
-
::frexp
: Returns the fraction and exponent of the given argument. -
::ldexp
: Returns the value for a given fraction and exponent.
Root Functions
-
::cbrt
: Returns the cube root of the given argument. -
::sqrt
: Returns the square root of the given argument.
Error Functions
-
::erf
: Returns the value of the Gauss error function for the given argument. -
::erfc
: Returns the value of the complementary error function for the given argument.
Gamma Functions
-
::gamma
: Returns the value of the gamma function for the given argument. -
::lgamma
: Returns the value of the logarithmic gamma function for the given argument.
Hypotenuse Function
-
::hypot
: Returnssqrt(a**2 + b**2)
for the givena
andb
.
static VALUE
math_acos(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
domain_check_range(d, -1.0, 1.0, "acos");
return DBL2NUM(acos(d));
}
Returns the arc cosine of x
.
-
Domain:
[-1, 1]
. -
Range:
[0, PI]
.
Examples:
acos(-1.0) # => 3.141592653589793 # PI acos(0.0) # => 1.5707963267948966 # PI/2 acos(1.0) # => 0.0
static VALUE
math_acosh(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
domain_check_min(d, 1.0, "acosh");
return DBL2NUM(acosh(d));
}
Returns the inverse hyperbolic cosine of x
.
-
Domain:
[1, INFINITY]
. -
Range:
[0, INFINITY]
.
Examples:
acosh(1.0) # => 0.0 acosh(INFINITY) # => Infinity
static VALUE
math_asin(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
domain_check_range(d, -1.0, 1.0, "asin");
return DBL2NUM(asin(d));
}
Returns the arc sine of x
.
-
Domain:
[-1, -1]
. -
Range:
[-PI/2, PI/2]
.
Examples:
asin(-1.0) # => -1.5707963267948966 # -PI/2 asin(0.0) # => 0.0 asin(1.0) # => 1.5707963267948966 # PI/2
static VALUE
math_asinh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(asinh(Get_Double(x)));
}
Returns the inverse hyperbolic sine of x
.
-
Domain:
[-INFINITY, INFINITY]
. -
Range:
[-INFINITY, INFINITY]
.
Examples:
asinh(-INFINITY) # => -Infinity asinh(0.0) # => 0.0 asinh(INFINITY) # => Infinity
static VALUE
math_atan(VALUE unused_obj, VALUE x)
{
return DBL2NUM(atan(Get_Double(x)));
}
Returns the arc tangent of x
.
-
Domain:
[-INFINITY, INFINITY]
. -
Range:
[-PI/2, PI/2]
.
Examples:
atan(-INFINITY) # => -1.5707963267948966 # -PI2 atan(-PI) # => -1.2626272556789115 atan(-PI/2) # => -1.0038848218538872 atan(0.0) # => 0.0 atan(PI/2) # => 1.0038848218538872 atan(PI) # => 1.2626272556789115 atan(INFINITY) # => 1.5707963267948966 # PI/2
static VALUE
math_atan2(VALUE unused_obj, VALUE y, VALUE x)
{
double dx, dy;
dx = Get_Double(x);
dy = Get_Double(y);
if (dx == 0.0 && dy == 0.0) {
if (!signbit(dx))
return DBL2NUM(dy);
if (!signbit(dy))
return DBL2NUM(M_PI);
return DBL2NUM(-M_PI);
}
#ifndef ATAN2_INF_C99
if (isinf(dx) && isinf(dy)) {
/* optimization for FLONUM */
if (dx < 0.0) {
const double dz = (3.0 * M_PI / 4.0);
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
}
else {
const double dz = (M_PI / 4.0);
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
}
}
#endif
return DBL2NUM(atan2(dy, dx));
}
Returns the arc tangent of y
and x
in radians.
-
Domain of
y
:[-INFINITY, INFINITY]
. -
Domain of
x
:[-INFINITY, INFINITY]
. -
Range:
[-PI, PI]
.
Examples:
atan2(-1.0, -1.0) # => -2.356194490192345 # -3*PI/4 atan2(-1.0, 0.0) # => -1.5707963267948966 # -PI/2 atan2(-1.0, 1.0) # => -0.7853981633974483 # -PI/4 atan2(0.0, -1.0) # => 3.141592653589793 # PI
static VALUE
math_atanh(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
domain_check_range(d, -1.0, +1.0, "atanh");
/* check for pole error */
if (d == -1.0) return DBL2NUM(-HUGE_VAL);
if (d == +1.0) return DBL2NUM(+HUGE_VAL);
return DBL2NUM(atanh(d));
}
Returns the inverse hyperbolic tangent of x
.
-
Domain:
[-1, 1]
. -
Range:
[-INFINITY, INFINITY]
.
Examples:
atanh(-1.0) # => -Infinity atanh(0.0) # => 0.0 atanh(1.0) # => Infinity
static VALUE
math_cbrt(VALUE unused_obj, VALUE x)
{
double f = Get_Double(x);
double r = cbrt(f);
#if defined __GLIBC__
if (isfinite(r) && !(f == 0.0 && r == 0.0)) {
r = (2.0 * r + (f / r / r)) / 3.0;
}
#endif
return DBL2NUM(r);
}
Returns the cube root of x
.
-
Domain:
[-INFINITY, INFINITY]
. -
Range:
[-INFINITY, INFINITY]
.
Examples:
cbrt(-INFINITY) # => -Infinity cbrt(-27.0) # => -3.0 cbrt(-8.0) # => -2.0 cbrt(-2.0) # => -1.2599210498948732 cbrt(1.0) # => 1.0 cbrt(0.0) # => 0.0 cbrt(1.0) # => 1.0 cbrt(2.0) # => 1.2599210498948732 cbrt(8.0) # => 2.0 cbrt(27.0) # => 3.0 cbrt(INFINITY) # => Infinity
static VALUE
math_cos(VALUE unused_obj, VALUE x)
{
return DBL2NUM(cos(Get_Double(x)));
}
static VALUE
math_cosh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(cosh(Get_Double(x)));
}
Returns the hyperbolic cosine of x
in radians.
-
Domain:
[-INFINITY, INFINITY]
. -
Range:
[1, INFINITY]
.
Examples:
cosh(-INFINITY) # => Infinity cosh(0.0) # => 1.0 cosh(INFINITY) # => Infinity
static VALUE
math_erf(VALUE unused_obj, VALUE x)
{
return DBL2NUM(erf(Get_Double(x)));
}
Returns the value of the Gauss error function for x
.
-
Domain:
[-INFINITY, INFINITY]
. -
Range:
[-1, 1]
.
Examples:
erf(-INFINITY) # => -1.0 erf(0.0) # => 0.0 erf(INFINITY) # => 1.0
Related: Math.erfc
.
static VALUE
math_erfc(VALUE unused_obj, VALUE x)
{
return DBL2NUM(erfc(Get_Double(x)));
}
Returns the value of the complementary error function for x
.
-
Domain:
[-INFINITY, INFINITY]
. -
Range:
[0, 2]
.
Examples:
erfc(-INFINITY) # => 2.0 erfc(0.0) # => 1.0 erfc(INFINITY) # => 0.0
Related: Math.erf
.
static VALUE
math_exp(VALUE unused_obj, VALUE x)
{
return DBL2NUM(exp(Get_Double(x)));
}
Returns e
raised to the x
power.
-
Domain:
[-INFINITY, INFINITY]
. -
Range:
[0, INFINITY]
.
Examples:
exp(-INFINITY) # => 0.0 exp(-1.0) # => 0.36787944117144233 # 1.0/E exp(0.0) # => 1.0 exp(0.5) # => 1.6487212707001282 # sqrt(E) exp(1.0) # => 2.718281828459045 # E exp(2.0) # => 7.38905609893065 # E**2 exp(INFINITY) # => Infinity
static VALUE
math_frexp(VALUE unused_obj, VALUE x)
{
double d;
int exp;
d = frexp(Get_Double(x), &exp);
return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}
Returns a 2-element array containing the normalized signed float fraction
and integer exponent
of x
such that:
x = fraction * 2**exponent
See IEEE 754 double-precision binary floating-point format: binary64.
-
Domain:
[-INFINITY, INFINITY]
. -
Range
[-INFINITY, INFINITY]
.
Examples:
frexp(-INFINITY) # => [-Infinity, -1] frexp(-2.0) # => [-0.5, 2] frexp(-1.0) # => [-0.5, 1] frexp(0.0) # => [0.0, 0] frexp(1.0) # => [0.5, 1] frexp(2.0) # => [0.5, 2] frexp(INFINITY) # => [Infinity, -1]
Related: Math.ldexp
(inverse of Math.frexp
).
static VALUE
math_gamma(VALUE unused_obj, VALUE x)
{
static const double fact_table[] = {
/* fact(0) */ 1.0,
/* fact(1) */ 1.0,
/* fact(2) */ 2.0,
/* fact(3) */ 6.0,
/* fact(4) */ 24.0,
/* fact(5) */ 120.0,
/* fact(6) */ 720.0,
/* fact(7) */ 5040.0,
/* fact(8) */ 40320.0,
/* fact(9) */ 362880.0,
/* fact(10) */ 3628800.0,
/* fact(11) */ 39916800.0,
/* fact(12) */ 479001600.0,
/* fact(13) */ 6227020800.0,
/* fact(14) */ 87178291200.0,
/* fact(15) */ 1307674368000.0,
/* fact(16) */ 20922789888000.0,
/* fact(17) */ 355687428096000.0,
/* fact(18) */ 6402373705728000.0,
/* fact(19) */ 121645100408832000.0,
/* fact(20) */ 2432902008176640000.0,
/* fact(21) */ 51090942171709440000.0,
/* fact(22) */ 1124000727777607680000.0,
/* fact(23)=25852016738884976640000 needs 56bit mantissa which is
* impossible to represent exactly in IEEE 754 double which have
* 53bit mantissa. */
};
enum {NFACT_TABLE = numberof(fact_table)};
double d;
d = Get_Double(x);
/* check for domain error */
if (isinf(d)) {
if (signbit(d)) domain_error("gamma");
return DBL2NUM(HUGE_VAL);
}
if (d == 0.0) {
return signbit(d) ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
}
if (d == floor(d)) {
domain_check_min(d, 0.0, "gamma");
if (1.0 <= d && d <= (double)NFACT_TABLE) {
return DBL2NUM(fact_table[(int)d - 1]);
}
}
return DBL2NUM(tgamma(d));
}
Returns the value of the gamma function for x
.
-
Domain:
(-INFINITY, INFINITY]
excluding negative integers. -
Range:
[-INFINITY, INFINITY]
.
Examples:
gamma(-2.5) # => -0.9453087204829431 gamma(-1.5) # => 2.3632718012073513 gamma(-0.5) # => -3.5449077018110375 gamma(0.0) # => Infinity gamma(1.0) # => 1.0 gamma(2.0) # => 1.0 gamma(3.0) # => 2.0 gamma(4.0) # => 6.0 gamma(5.0) # => 24.0
Related: Math.lgamma
.
static VALUE
math_hypot(VALUE unused_obj, VALUE x, VALUE y)
{
return DBL2NUM(hypot(Get_Double(x), Get_Double(y)));
}
Returns sqrt(a**2 + b**2)
, which is the length of the longest side c
(the hypotenuse) of the right triangle whose other sides have lengths a
and b
.
-
Domain of
a
:[-INFINITY, INFINITY]
. -
Domain of +ab:
[-INFINITY, INFINITY]
. -
Range:
[0, INFINITY]
.
Examples:
hypot(0.0, 1.0) # => 1.0 hypot(1.0, 1.0) # => 1.4142135623730951 # sqrt(2.0) hypot(3.0, 4.0) # => 5.0 hypot(5.0, 12.0) # => 13.0 hypot(1.0, sqrt(3.0)) # => 1.9999999999999998 # Near 2.0
Note that if either argument is INFINITY
or -INFINITY
, the result is Infinity
.
static VALUE
math_ldexp(VALUE unused_obj, VALUE x, VALUE n)
{
return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)));
}
Returns the value of fraction * 2**exponent
.
-
Domain of
fraction
:[0.0, 1.0)
. -
Domain of
exponent
:[0, 1024]
(larger values are equivalent to 1024).
See IEEE 754 double-precision binary floating-point format: binary64.
Examples:
ldexp(-INFINITY, -1) # => -Infinity ldexp(-0.5, 2) # => -2.0 ldexp(-0.5, 1) # => -1.0 ldexp(0.0, 0) # => 0.0 ldexp(-0.5, 1) # => 1.0 ldexp(-0.5, 2) # => 2.0 ldexp(INFINITY, -1) # => Infinity
Related: Math.frexp
(inverse of Math.ldexp
).
static VALUE
math_lgamma(VALUE unused_obj, VALUE x)
{
double d;
int sign=1;
VALUE v;
d = Get_Double(x);
/* check for domain error */
if (isinf(d)) {
if (signbit(d)) domain_error("lgamma");
return rb_assoc_new(DBL2NUM(HUGE_VAL), INT2FIX(1));
}
if (d == 0.0) {
VALUE vsign = signbit(d) ? INT2FIX(-1) : INT2FIX(+1);
return rb_assoc_new(DBL2NUM(HUGE_VAL), vsign);
}
v = DBL2NUM(lgamma_r(d, &sign));
return rb_assoc_new(v, INT2FIX(sign));
}
Returns a 2-element array equivalent to:
[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
See logarithmic gamma function.
-
Domain:
(-INFINITY, INFINITY]
. -
Range
of first element:(-INFINITY, INFINITY]
. -
Second element is -1 or 1.
Examples:
lgamma(-4.0) # => [Infinity, -1] lgamma(-3.0) # => [Infinity, -1] lgamma(-2.0) # => [Infinity, -1] lgamma(-1.0) # => [Infinity, -1] lgamma(0.0) # => [Infinity, 1] lgamma(1.0) # => [0.0, 1] lgamma(2.0) # => [0.0, 1] lgamma(3.0) # => [0.6931471805599436, 1] lgamma(4.0) # => [1.7917594692280545, 1] lgamma(-2.5) # => [-0.05624371649767279, -1] lgamma(-1.5) # => [0.8600470153764797, 1] lgamma(-0.5) # => [1.265512123484647, -1] lgamma(0.5) # => [0.5723649429247004, 1] lgamma(1.5) # => [-0.12078223763524676, 1] lgamma(2.5) # => [0.2846828704729205, 1]
Related: Math.gamma
.
static VALUE
math_log(int argc, const VALUE *argv, VALUE unused_obj)
{
return rb_math_log(argc, argv);
}
Returns the base base
logarithm of x
.
-
Domain:
[0, INFINITY]
. -
Range:
[-INFINITY, INFINITY)]
.
Examples:
log(0.0) # => -Infinity log(1.0) # => 0.0 log(E) # => 1.0 log(INFINITY) # => Infinity log(0.0, 2.0) # => -Infinity log(1.0, 2.0) # => 0.0 log(2.0, 2.0) # => 1.0 log(0.0, 10.0) # => -Infinity log(1.0, 10.0) # => 0.0 log(10.0, 10.0) # => 1.0
static VALUE
math_log10(VALUE unused_obj, VALUE x)
{
size_t numbits;
double d = get_double_rshift(x, &numbits);
domain_check_min(d, 0.0, "log10");
/* check for pole error */
if (d == 0.0) return DBL2NUM(-HUGE_VAL);
return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */
}
Returns the base 10 logarithm of x
.
-
Domain:
[0, INFINITY]
. -
Range:
[-INFINITY, INFINITY]
.
Examples:
log10(0.0) # => -Infinity log10(1.0) # => 0.0 log10(10.0) # => 1.0 log10(INFINITY) # => Infinity
static VALUE
math_log2(VALUE unused_obj, VALUE x)
{
size_t numbits;
double d = get_double_rshift(x, &numbits);
domain_check_min(d, 0.0, "log2");
/* check for pole error */
if (d == 0.0) return DBL2NUM(-HUGE_VAL);
return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */
}
Returns the base 2 logarithm of x
.
-
Domain:
[0, INFINITY]
. -
Range:
[-INFINITY, INFINITY]
.
Examples:
log2(0.0) # => -Infinity log2(1.0) # => 0.0 log2(2.0) # => 1.0 log2(INFINITY) # => Infinity
static VALUE
math_sin(VALUE unused_obj, VALUE x)
{
return DBL2NUM(sin(Get_Double(x)));
}
static VALUE
math_sinh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(sinh(Get_Double(x)));
}
Returns the hyperbolic sine of x
in radians.
-
Domain:
[-INFINITY, INFINITY]
. -
Range:
[-INFINITY, INFINITY]
.
Examples:
sinh(-INFINITY) # => -Infinity sinh(0.0) # => 0.0 sinh(INFINITY) # => Infinity
static VALUE
math_sqrt(VALUE unused_obj, VALUE x)
{
return rb_math_sqrt(x);
}
Returns the principal (non-negative) square root of x
.
-
Domain:
[0, INFINITY]
. -
Range:
[0, INFINITY]
.
Examples:
sqrt(0.0) # => 0.0 sqrt(0.5) # => 0.7071067811865476 sqrt(1.0) # => 1.0 sqrt(2.0) # => 1.4142135623730951 sqrt(4.0) # => 2.0 sqrt(9.0) # => 3.0 sqrt(INFINITY) # => Infinity
static VALUE
math_tan(VALUE unused_obj, VALUE x)
{
return DBL2NUM(tan(Get_Double(x)));
}
Returns the tangent of x
in radians.
-
Domain:
(-INFINITY, INFINITY)
. -
Range:
(-INFINITY, INFINITY)
.
Examples:
tan(-PI) # => 1.2246467991473532e-16 # -0.0000000000000001 tan(-PI/2) # => -1.633123935319537e+16 # -16331239353195370.0 tan(0.0) # => 0.0 tan(PI/2) # => 1.633123935319537e+16 # 16331239353195370.0 tan(PI) # => -1.2246467991473532e-16 # -0.0000000000000001
static VALUE
math_tanh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(tanh(Get_Double(x)));
}
Returns the hyperbolic tangent of x
in radians.
-
Domain:
[-INFINITY, INFINITY]
. -
Range:
[-1, 1]
.
Examples:
tanh(-INFINITY) # => -1.0 tanh(0.0) # => 0.0 tanh(INFINITY) # => 1.0