Results for: "partition"

Helper methods for both Gem::Installer and Gem::Uninstaller

No documentation available

This module contains various utility methods as module methods.

An Array is an ordered, integer-indexed collection of objects, called elements. Any object may be an Array element.

Array Indexes

Array indexing starts at 0, as in C or Java.

A positive index is an offset from the first element:

A negative index is an offset, backwards, from the end of the array:

A non-negative index is in range if it is smaller than the size of the array. For a 3-element array:

A negative index is in range if its absolute value is not larger than the size of the array. For a 3-element array:

Creating Arrays

You can create an Array object explicitly with:

You can convert certain objects to Arrays with:

An Array can contain different types of objects. For example, the array below contains an Integer, a String and a Float:

ary = [1, "two", 3.0] #=> [1, "two", 3.0]

An array can also be created by calling Array.new with zero, one (the initial size of the Array) or two arguments (the initial size and a default object).

ary = Array.new    #=> []
Array.new(3)       #=> [nil, nil, nil]
Array.new(3, true) #=> [true, true, true]

Note that the second argument populates the array with references to the same object. Therefore, it is only recommended in cases when you need to instantiate arrays with natively immutable objects such as Symbols, numbers, true or false.

To create an array with separate objects a block can be passed instead. This method is safe to use with mutable objects such as hashes, strings or other arrays:

Array.new(4) {Hash.new}    #=> [{}, {}, {}, {}]
Array.new(4) {|i| i.to_s } #=> ["0", "1", "2", "3"]

This is also a quick way to build up multi-dimensional arrays:

empty_table = Array.new(3) {Array.new(3)}
#=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]

An array can also be created by using the Array() method, provided by Kernel, which tries to call to_ary, then to_a on its argument.

Array({:a => "a", :b => "b"}) #=> [[:a, "a"], [:b, "b"]]

Example Usage

In addition to the methods it mixes in through the Enumerable module, the Array class has proprietary methods for accessing, searching and otherwise manipulating arrays.

Some of the more common ones are illustrated below.

Accessing Elements

Elements in an array can be retrieved using the Array#[] method. It can take a single integer argument (a numeric index), a pair of arguments (start and length) or a range. Negative indices start counting from the end, with -1 being the last element.

arr = [1, 2, 3, 4, 5, 6]
arr[2]    #=> 3
arr[100]  #=> nil
arr[-3]   #=> 4
arr[2, 3] #=> [3, 4, 5]
arr[1..4] #=> [2, 3, 4, 5]
arr[1..-3] #=> [2, 3, 4]

Another way to access a particular array element is by using the at method

arr.at(0) #=> 1

The slice method works in an identical manner to Array#[].

To raise an error for indices outside of the array bounds or else to provide a default value when that happens, you can use fetch.

arr = ['a', 'b', 'c', 'd', 'e', 'f']
arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6
arr.fetch(100, "oops") #=> "oops"

The special methods first and last will return the first and last elements of an array, respectively.

arr.first #=> 1
arr.last  #=> 6

To return the first n elements of an array, use take

arr.take(3) #=> [1, 2, 3]

drop does the opposite of take, by returning the elements after n elements have been dropped:

arr.drop(3) #=> [4, 5, 6]

Obtaining Information about an Array

Arrays keep track of their own length at all times. To query an array about the number of elements it contains, use length, count or size.

browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE']
browsers.length #=> 5
browsers.count #=> 5

To check whether an array contains any elements at all

browsers.empty? #=> false

To check whether a particular item is included in the array

browsers.include?('Konqueror') #=> false

Adding Items to Arrays

Items can be added to the end of an array by using either push or <<

arr = [1, 2, 3, 4]
arr.push(5) #=> [1, 2, 3, 4, 5]
arr << 6    #=> [1, 2, 3, 4, 5, 6]

unshift will add a new item to the beginning of an array.

arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]

With insert you can add a new element to an array at any position.

arr.insert(3, 'apple')  #=> [0, 1, 2, 'apple', 3, 4, 5, 6]

Using the insert method, you can also insert multiple values at once:

arr.insert(3, 'orange', 'pear', 'grapefruit')
#=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]

Removing Items from an Array

The method pop removes the last element in an array and returns it:

arr =  [1, 2, 3, 4, 5, 6]
arr.pop #=> 6
arr #=> [1, 2, 3, 4, 5]

To retrieve and at the same time remove the first item, use shift:

arr.shift #=> 1
arr #=> [2, 3, 4, 5]

To delete an element at a particular index:

arr.delete_at(2) #=> 4
arr #=> [2, 3, 5]

To delete a particular element anywhere in an array, use delete:

arr = [1, 2, 2, 3]
arr.delete(2) #=> 2
arr #=> [1,3]

A useful method if you need to remove nil values from an array is compact:

arr = ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact  #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact! #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, 'bar', 7, 'baz']

Another common need is to remove duplicate elements from an array.

It has the non-destructive uniq, and destructive method uniq!

arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556]
arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]

Iterating over Arrays

Like all classes that include the Enumerable module, Array has an each method, which defines what elements should be iterated over and how. In case of Array’s each, all elements in the Array instance are yielded to the supplied block in sequence.

Note that this operation leaves the array unchanged.

arr = [1, 2, 3, 4, 5]
arr.each {|a| print a -= 10, " "}
# prints: -9 -8 -7 -6 -5
#=> [1, 2, 3, 4, 5]

Another sometimes useful iterator is reverse_each which will iterate over the elements in the array in reverse order.

words = %w[first second third fourth fifth sixth]
str = ""
words.reverse_each {|word| str += "#{word} "}
p str #=> "sixth fifth fourth third second first "

The map method can be used to create a new array based on the original array, but with the values modified by the supplied block:

arr.map {|a| 2*a}     #=> [2, 4, 6, 8, 10]
arr                   #=> [1, 2, 3, 4, 5]
arr.map! {|a| a**2}   #=> [1, 4, 9, 16, 25]
arr                   #=> [1, 4, 9, 16, 25]

Selecting Items from an Array

Elements can be selected from an array according to criteria defined in a block. The selection can happen in a destructive or a non-destructive manner. While the destructive operations will modify the array they were called on, the non-destructive methods usually return a new array with the selected elements, but leave the original array unchanged.

Non-destructive Selection

arr = [1, 2, 3, 4, 5, 6]
arr.select {|a| a > 3}       #=> [4, 5, 6]
arr.reject {|a| a < 3}       #=> [3, 4, 5, 6]
arr.drop_while {|a| a < 4}   #=> [4, 5, 6]
arr                          #=> [1, 2, 3, 4, 5, 6]

Destructive Selection

select! and reject! are the corresponding destructive methods to select and reject

Similar to select vs. reject, delete_if and keep_if have the exact opposite result when supplied with the same block:

arr.delete_if {|a| a < 4}   #=> [4, 5, 6]
arr                         #=> [4, 5, 6]

arr = [1, 2, 3, 4, 5, 6]
arr.keep_if {|a| a < 4}   #=> [1, 2, 3]
arr                       #=> [1, 2, 3]

What’s Here

First, what’s elsewhere. Class Array:

Here, class Array provides methods that are useful for:

Methods for Creating an Array

::[]

Returns a new array populated with given objects.

::new

Returns a new array.

::try_convert

Returns a new array created from a given object.

Methods for Querying

length, size

Returns the count of elements.

include?

Returns whether any element == a given object.

empty?

Returns whether there are no elements.

all?

Returns whether all elements meet a given criterion.

any?

Returns whether any element meets a given criterion.

none?

Returns whether no element == a given object.

one?

Returns whether exactly one element == a given object.

count

Returns the count of elements that meet a given criterion.

find_index, index

Returns the index of the first element that meets a given criterion.

rindex

Returns the index of the last element that meets a given criterion.

hash

Returns the integer hash code.

Methods for Comparing

#<=>

Returns -1, 0, or 1 as self is less than, equal to, or greater than a given object.

#==

Returns whether each element in self is == to the corresponding element in a given object.

eql?

Returns whether each element in self is eql? to the corresponding element in a given object.

Methods for Fetching

These methods do not modify self.

[]

Returns one or more elements.

fetch

Returns the element at a given offset.

first

Returns one or more leading elements.

last

Returns one or more trailing elements.

max

Returns one or more maximum-valued elements, as determined by <=> or a given block.

max

Returns one or more minimum-valued elements, as determined by <=> or a given block.

minmax

Returns the minimum-valued and maximum-valued elements, as determined by <=> or a given block.

assoc

Returns the first element that is an array whose first element == a given object.

rassoc

Returns the first element that is an array whose second element == a given object.

at

Returns the element at a given offset.

values_at

Returns the elements at given offsets.

dig

Returns the object in nested objects that is specified by a given index and additional arguments.

drop

Returns trailing elements as determined by a given index.

take

Returns leading elements as determined by a given index.

drop_while

Returns trailing elements as determined by a given block.

take_while

Returns leading elements as determined by a given block.

slice

Returns consecutive elements as determined by a given argument.

sort

Returns all elements in an order determined by <=> or a given block.

reverse

Returns all elements in reverse order.

compact

Returns an array containing all non-nil elements.

select, filter

Returns an array containing elements selected by a given block.

uniq

Returns an array containing non-duplicate elements.

rotate

Returns all elements with some rotated from one end to the other.

bsearch

Returns an element selected via a binary search as determined by a given block.

bsearch_index

Returns the index of an element selected via a binary search as determined by a given block.

sample

Returns one or more random elements.

shuffle

Returns elements in a random order.

Methods for Assigning

These methods add, replace, or reorder elements in self.

[]=

Assigns specified elements with a given object.

push, append, <<

Appends trailing elements.

unshift, prepend

Prepends leading elements.

insert

Inserts given objects at a given offset; does not replace elements.

concat

Appends all elements from given arrays.

fill

Replaces specified elements with specified objects.

replace

Replaces the content of self with the content of a given array.

reverse!

Replaces self with its elements reversed.

rotate!

Replaces self with its elements rotated.

shuffle!

Replaces self with its elements in random order.

sort!

Replaces self with its elements sorted, as determined by <=> or a given block.

sort_by!

Replaces self with its elements sorted, as determined by a given block.

Methods for Deleting

Each of these methods removes elements from self:

pop

Removes and returns the last element.

shift

Removes and returns the first element.

compact!

Removes all non-nil elements.

delete

Removes elements equal to a given object.

delete_at

Removes the element at a given offset.

delete_if

Removes elements specified by a given block.

keep_if

Removes elements not specified by a given block.

reject!

Removes elements specified by a given block.

select!, filter!

Removes elements not specified by a given block.

slice!

Removes and returns a sequence of elements.

uniq!

Removes duplicates.

Methods for Combining

#&

Returns an array containing elements found both in self and a given array.

intersection

Returns an array containing elements found both in self and in each given array.

+

Returns an array containing all elements of self followed by all elements of a given array.

-

Returns an array containiing all elements of self that are not found in a given array.

#|

Returns an array containing all elements of self and all elements of a given array, duplicates removed.

union

Returns an array containing all elements of self and all elements of given arrays, duplicates removed.

difference

Returns an array containing all elements of self that are not found in any of the given arrays..

product

Returns or yields all combinations of elements from self and given arrays.

Methods for Iterating

each

Passes each element to a given block.

reverse_each

Passes each element, in reverse order, to a given block.

each_index

Passes each element index to a given block.

cycle

Calls a given block with each element, then does so again, for a specified number of times, or forever.

combination

Calls a given block with combinations of elements of self; a combination does not use the same element more than once.

permutation

Calls a given block with permutations of elements of self; a permutation does not use the same element more than once.

repeated_combination

Calls a given block with combinations of elements of self; a combination may use the same element more than once.

repeated_permutation

Calls a given block with permutations of elements of self; a permutation may use the same element more than once.

Methods for Converting

map, collect

Returns an array containing the block return-value for each element.

map!, collect!

Replaces each element with a block return-value.

flatten

Returns an array that is a recursive flattening of self.

flatten!

Replaces each nested array in self with the elements from that array.

inspect, to_s

Returns a new String containing the elements.

join

Returns a newsString containing the elements joined by the field separator.

to_a

Returns self or a new array containing all elements.

to_ary

Returns self.

to_h

Returns a new hash formed from the elements.

transpose

Transposes self, which must be an array of arrays.

zip

Returns a new array of arrays containing self and given arrays; follow the link for details.

Other Methods

*

Returns one of the following:

  • With integer argument n, a new array that is the concatenation of n copies of self.

  • With string argument field_separator, a new string that is equivalent to join(field_separator).

abbrev

Returns a hash of unambiguous abbreviations for elements.

pack

Packs the elements into a binary sequence.

sum

Returns a sum of elements according to either + or a given block.

for pack.c

Raised by exit to initiate the termination of the script.

The most standard error types are subclasses of StandardError. A rescue clause without an explicit Exception class will rescue all StandardErrors (and only those).

def foo
  raise "Oups"
end
foo rescue "Hello"   #=> "Hello"

On the other hand:

require 'does/not/exist' rescue "Hi"

raises the exception:

LoadError: no such file to load -- does/not/exist

Raised when the arguments are wrong and there isn’t a more specific Exception class.

Ex: passing the wrong number of arguments

[1, 2, 3].first(4, 5)

raises the exception:

ArgumentError: wrong number of arguments (given 2, expected 1)

Ex: passing an argument that is not acceptable:

[1, 2, 3].first(-4)

raises the exception:

ArgumentError: negative array size

No longer used by internal code.

No documentation available
No documentation available

IO

Expect library adds the IO instance method expect, which does similar act to tcl’s expect extension.

In order to use this method, you must require expect:

require 'expect'

Please see expect for usage.

The IO class is the basis for all input and output in Ruby. An I/O stream may be duplexed (that is, bidirectional), and so may use more than one native operating system stream.

Many of the examples in this section use the File class, the only standard subclass of IO. The two classes are closely associated. Like the File class, the Socket library subclasses from IO (such as TCPSocket or UDPSocket).

The Kernel#open method can create an IO (or File) object for these types of arguments:

The IO may be opened with different file modes (read-only, write-only) and encodings for proper conversion. See IO.new for these options. See Kernel#open for details of the various command formats described above.

IO.popen, the Open3 library, or Process#spawn may also be used to communicate with subprocesses through an IO.

Ruby will convert pathnames between different operating system conventions if possible. For instance, on a Windows system the filename "/gumby/ruby/test.rb" will be opened as "\gumby\ruby\test.rb". When specifying a Windows-style filename in a Ruby string, remember to escape the backslashes:

"C:\\gumby\\ruby\\test.rb"

Our examples here will use the Unix-style forward slashes; File::ALT_SEPARATOR can be used to get the platform-specific separator character.

The global constant ARGF (also accessible as $<) provides an IO-like stream which allows access to all files mentioned on the command line (or STDIN if no files are mentioned). ARGF#path and its alias ARGF#filename are provided to access the name of the file currently being read.

io/console

The io/console extension provides methods for interacting with the console. The console can be accessed from IO.console or the standard input/output/error IO objects.

Requiring io/console adds the following methods:

Example:

require 'io/console'
rows, columns = $stdout.winsize
puts "Your screen is #{columns} wide and #{rows} tall"

Example Files

Many examples here use these filenames and their corresponding files:

Modes

A number of IO method calls must or may specify a mode for the stream; the mode determines how stream is to be accessible, including:

Mode Specified as an Integer

When mode is an integer it must be one or more (combined by bitwise OR (|) of the modes defined in File::Constants:

Examples:

File.new('t.txt', File::RDONLY)
File.new('t.tmp', File::RDWR | File::CREAT | File::EXCL)

Note: Method IO#set_encoding does not allow the mode to be specified as an integer.

Mode Specified As a String

When mode is a string it must begin with one of the following:

For a writable file stream (that is, any except read-only), the file is truncated to zero if it exists, and is created if it does not exist.

Examples:

File.open('t.txt', 'r')
File.open('t.tmp', 'w')

Either of the following may be suffixed to any of the above:

If neither is given, the stream defaults to text data.

Examples:

File.open('t.txt', 'rt')
File.open('t.dat', 'rb')

The following may be suffixed to any writable mode above:

Example:

File.open('t.tmp', 'wx')

Finally, the mode string may specify encodings – either external encoding only or both external and internal encodings – by appending one or both encoding names, separated by colons:

f = File.new('t.dat', 'rb')
f.external_encoding # => #<Encoding:ASCII-8BIT>
f.internal_encoding # => nil
f = File.new('t.dat', 'rb:UTF-16')
f.external_encoding # => #<Encoding:UTF-16 (dummy)>
f.internal_encoding # => nil
f = File.new('t.dat', 'rb:UTF-16:UTF-16')
f.external_encoding # => #<Encoding:UTF-16 (dummy)>
f.internal_encoding # => #<Encoding:UTF-16>

The numerous encoding names are available in array Encoding.name_list:

Encoding.name_list.size    # => 175
Encoding.name_list.take(3) # => ["ASCII-8BIT", "UTF-8", "US-ASCII"]

Encodings

When the external encoding is set, strings read are tagged by that encoding when reading, and strings written are converted to that encoding when writing.

When both external and internal encodings are set, strings read are converted from external to internal encoding, and strings written are converted from internal to external encoding. For further details about transcoding input and output, see Encoding.

If the external encoding is 'BOM|UTF-8', 'BOM|UTF-16LE' or 'BOM|UTF16-BE', Ruby checks for a Unicode BOM in the input document to help determine the encoding. For UTF-16 encodings the file open mode must be binary. If the BOM is found, it is stripped and the external encoding from the BOM is used.

Note that the BOM-style encoding option is case insensitive, so ‘bom|utf-8’ is also valid.)

Open Options

A number of IO methods accept an optional parameter opts, which determines how a new stream is to be opened:

Also available are the options offered in String#encode, which may control conversion between external internal encoding.

Getline Options

A number of IO methods accept optional keyword arguments that determine how a stream is to be treated:

Position

An IO stream has a position, which is the non-negative integer offset (in bytes) in the stream where the next read or write will occur.

Note that a text stream may have multi-byte characters, so a text stream whose position is n (bytes) may not have n characters preceding the current position – there may be fewer.

A new stream is initially positioned:

Methods to query the position:

Reading from a stream usually changes its position:

f = File.open('t.txt')
f.tell     # => 0
f.readline # => "This is line one.\n"
f.tell     # => 19
f.readline # => "This is the second line.\n"
f.tell     # => 45
f.eof?     # => false
f.readline # => "Here's the third line.\n"
f.eof?     # => true

Writing to a stream usually changes its position:

f = File.open('t.tmp', 'w')
f.tell         # => 0
f.write('foo') # => 3
f.tell         # => 3
f.write('bar') # => 3
f.tell         # => 6

Iterating over a stream usually changes its position:

f = File.open('t.txt')
f.each do |line|
  p "position=#{f.pos} eof?=#{f.eof?} line=#{line}"
end

Output:

"position=19 eof?=false line=This is line one.\n"
"position=45 eof?=false line=This is the second line.\n"
"position=70 eof?=true line=This is the third line.\n"

The position may also be changed by certain other methods:

Line Number

A readable IO stream has a line number, which is the non-negative integer line number in the stream where the next read will occur.

A new stream is initially has line number 0.

Method IO#lineno returns the line number.

Reading lines from a stream usually changes its line number:

f = File.open('t.txt', 'r')
f.lineno   # => 0
f.readline # => "This is line one.\n"
f.lineno   # => 1
f.readline # => "This is the second line.\n"
f.lineno   # => 2
f.readline # => "Here's the third line.\n"
f.lineno   # => 3
f.eof?     # => true

Iterating over lines in a stream usually changes its line number:

f = File.open('t.txt')
f.each_line do |line|
  p "position=#{f.pos} eof?=#{f.eof?} line=#{line}"
end

Output:

"position=19 eof?=false line=This is line one.\n"
"position=45 eof?=false line=This is the second line.\n"
"position=70 eof?=true line=This is the third line.\n"

What’s Here

First, what’s elsewhere. Class IO:

Here, class IO provides methods that are useful for:

Creating

Reading

Writing

Positioning

Iterating

Settings

Querying

Buffering

Low-Level Access

Other

Pathname represents the name of a file or directory on the filesystem, but not the file itself.

The pathname depends on the Operating System: Unix, Windows, etc. This library works with pathnames of local OS, however non-Unix pathnames are supported experimentally.

A Pathname can be relative or absolute. It’s not until you try to reference the file that it even matters whether the file exists or not.

Pathname is immutable. It has no method for destructive update.

The goal of this class is to manipulate file path information in a neater way than standard Ruby provides. The examples below demonstrate the difference.

All functionality from File, FileTest, and some from Dir and FileUtils is included, in an unsurprising way. It is essentially a facade for all of these, and more.

Examples

Example 1: Using Pathname

require 'pathname'
pn = Pathname.new("/usr/bin/ruby")
size = pn.size              # 27662
isdir = pn.directory?       # false
dir  = pn.dirname           # Pathname:/usr/bin
base = pn.basename          # Pathname:ruby
dir, base = pn.split        # [Pathname:/usr/bin, Pathname:ruby]
data = pn.read
pn.open { |f| _ }
pn.each_line { |line| _ }

Example 2: Using standard Ruby

pn = "/usr/bin/ruby"
size = File.size(pn)        # 27662
isdir = File.directory?(pn) # false
dir  = File.dirname(pn)     # "/usr/bin"
base = File.basename(pn)    # "ruby"
dir, base = File.split(pn)  # ["/usr/bin", "ruby"]
data = File.read(pn)
File.open(pn) { |f| _ }
File.foreach(pn) { |line| _ }

Example 3: Special features

p1 = Pathname.new("/usr/lib")   # Pathname:/usr/lib
p2 = p1 + "ruby/1.8"            # Pathname:/usr/lib/ruby/1.8
p3 = p1.parent                  # Pathname:/usr
p4 = p2.relative_path_from(p3)  # Pathname:lib/ruby/1.8
pwd = Pathname.pwd              # Pathname:/home/gavin
pwd.absolute?                   # true
p5 = Pathname.new "."           # Pathname:.
p5 = p5 + "music/../articles"   # Pathname:music/../articles
p5.cleanpath                    # Pathname:articles
p5.realpath                     # Pathname:/home/gavin/articles
p5.children                     # [Pathname:/home/gavin/articles/linux, ...]

Breakdown of functionality

Core methods

These methods are effectively manipulating a String, because that’s all a path is. None of these access the file system except for mountpoint?, children, each_child, realdirpath and realpath.

File status predicate methods

These methods are a facade for FileTest:

File property and manipulation methods

These methods are a facade for File:

Directory methods

These methods are a facade for Dir:

IO

These methods are a facade for IO:

Utilities

These methods are a mixture of Find, FileUtils, and others:

Method documentation

As the above section shows, most of the methods in Pathname are facades. The documentation for these methods generally just says, for instance, “See FileTest.writable?”, as you should be familiar with the original method anyway, and its documentation (e.g. through ri) will contain more information. In some cases, a brief description will follow.

Pseudo I/O on String object, with interface corresponding to IO.

Commonly used to simulate $stdio or $stderr

Examples

require 'stringio'

# Writing stream emulation
io = StringIO.new
io.puts "Hello World"
io.string #=> "Hello World\n"

# Reading stream emulation
io = StringIO.new "first\nsecond\nlast\n"
io.getc #=> "f"
io.gets #=> "irst\n"
io.read #=> "second\nlast\n"

OLEProperty helper class of Property with arguments.

Raised when an IO operation fails.

File.open("/etc/hosts") {|f| f << "example"}
  #=> IOError: not opened for writing

File.open("/etc/hosts") {|f| f.close; f.read }
  #=> IOError: closed stream

Note that some IO failures raise SystemCallErrors and these are not subclasses of IOError:

File.open("does/not/exist")
  #=> Errno::ENOENT: No such file or directory - does/not/exist

ARGF is a stream designed for use in scripts that process files given as command-line arguments or passed in via STDIN.

The arguments passed to your script are stored in the ARGV Array, one argument per element. ARGF assumes that any arguments that aren’t filenames have been removed from ARGV. For example:

$ ruby argf.rb --verbose file1 file2

ARGV  #=> ["--verbose", "file1", "file2"]
option = ARGV.shift #=> "--verbose"
ARGV  #=> ["file1", "file2"]

You can now use ARGF to work with a concatenation of each of these named files. For instance, ARGF.read will return the contents of file1 followed by the contents of file2.

After a file in ARGV has been read ARGF removes it from the Array. Thus, after all files have been read ARGV will be empty.

You can manipulate ARGV yourself to control what ARGF operates on. If you remove a file from ARGV, it is ignored by ARGF; if you add files to ARGV, they are treated as if they were named on the command line. For example:

ARGV.replace ["file1"]
ARGF.readlines # Returns the contents of file1 as an Array
ARGV           #=> []
ARGV.replace ["file2", "file3"]
ARGF.read      # Returns the contents of file2 and file3

If ARGV is empty, ARGF acts as if it contained STDIN, i.e. the data piped to your script. For example:

$ echo "glark" | ruby -e 'p ARGF.read'
"glark\n"

The GetoptLong class allows you to parse command line options similarly to the GNU getopt_long() C library call. Note, however, that GetoptLong is a pure Ruby implementation.

GetoptLong allows for POSIX-style options like --file as well as single letter options like -f

The empty option -- (two minus symbols) is used to end option processing. This can be particularly important if options have optional arguments.

Here is a simple example of usage:

require 'getoptlong'

opts = GetoptLong.new(
  [ '--help', '-h', GetoptLong::NO_ARGUMENT ],
  [ '--repeat', '-n', GetoptLong::REQUIRED_ARGUMENT ],
  [ '--name', GetoptLong::OPTIONAL_ARGUMENT ]
)

dir = nil
name = nil
repetitions = 1
opts.each do |opt, arg|
  case opt
    when '--help'
      puts <<-EOF
hello [OPTION] ... DIR

-h, --help:
   show help

--repeat x, -n x:
   repeat x times

--name [name]:
   greet user by name, if name not supplied default is John

DIR: The directory in which to issue the greeting.
      EOF
    when '--repeat'
      repetitions = arg.to_i
    when '--name'
      if arg == ''
        name = 'John'
      else
        name = arg
      end
  end
end

if ARGV.length != 1
  puts "Missing dir argument (try --help)"
  exit 0
end

dir = ARGV.shift

Dir.chdir(dir)
for i in (1..repetitions)
  print "Hello"
  if name
    print ", #{name}"
  end
  puts
end

Example command line:

hello -n 6 --name -- /tmp

IPAddr provides a set of methods to manipulate an IP address. Both IPv4 and IPv6 are supported.

Example

require 'ipaddr'

ipaddr1 = IPAddr.new "3ffe:505:2::1"

p ipaddr1                   #=> #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0001/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>

p ipaddr1.to_s              #=> "3ffe:505:2::1"

ipaddr2 = ipaddr1.mask(48)  #=> #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0000/ffff:ffff:ffff:0000:0000:0000:0000:0000>

p ipaddr2.to_s              #=> "3ffe:505:2::"

ipaddr3 = IPAddr.new "192.168.2.0/24"

p ipaddr3                   #=> #<IPAddr: IPv4:192.168.2.0/255.255.255.0>

The Warning module contains a single method named warn, and the module extends itself, making Warning.warn available. Warning.warn is called for all warnings issued by Ruby. By default, warnings are printed to $stderr.

Changing the behavior of Warning.warn is useful to customize how warnings are handled by Ruby, for instance by filtering some warnings, and/or outputting warnings somewhere other than $stderr.

If you want to change the behavior of Warning.warn you should use +Warning.extend(MyNewModuleWithWarnMethod)+ and you can use ‘super` to get the default behavior of printing the warning to $stderr.

Example:

module MyWarningFilter
  def warn(message, category: nil, **kwargs)
    if /some warning I want to ignore/.match?(message)
      # ignore
    else
      super
    end
  end
end
Warning.extend MyWarningFilter

You should never redefine Warning#warn (the instance method), as that will then no longer provide a way to use the default behavior.

The warning gem provides convenient ways to customize Warning.warn.

newton.rb

Solves the nonlinear algebraic equation system f = 0 by Newton’s method. This program is not dependent on BigDecimal.

To call:

  n = nlsolve(f,x)
where n is the number of iterations required,
      x is the initial value vector
      f is an Object which is used to compute the values of the equations to be solved.

It must provide the following methods:

f.values(x)

returns the values of all functions at x

f.zero

returns 0.0

f.one

returns 1.0

f.two

returns 2.0

f.ten

returns 10.0

f.eps

returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.

On exit, x is the solution vector.

JavaScript Object Notation (JSON)

JSON is a lightweight data-interchange format.

A JSON value is one of the following:

A JSON array or object may contain nested arrays, objects, and scalars to any depth:

{"foo": {"bar": 1, "baz": 2}, "bat": [0, 1, 2]}
[{"foo": 0, "bar": 1}, ["baz", 2]]

Using Module JSON

To make module JSON available in your code, begin with:

require 'json'

All examples here assume that this has been done.

Parsing JSON

You can parse a String containing JSON data using either of two methods:

where

The difference between the two methods is that JSON.parse! omits some checks and may not be safe for some source data; use it only for data from trusted sources. Use the safer method JSON.parse for less trusted sources.

Parsing JSON Arrays

When source is a JSON array, JSON.parse by default returns a Ruby Array:

json = '["foo", 1, 1.0, 2.0e2, true, false, null]'
ruby = JSON.parse(json)
ruby # => ["foo", 1, 1.0, 200.0, true, false, nil]
ruby.class # => Array

The JSON array may contain nested arrays, objects, and scalars to any depth:

json = '[{"foo": 0, "bar": 1}, ["baz", 2]]'
JSON.parse(json) # => [{"foo"=>0, "bar"=>1}, ["baz", 2]]

Parsing JSON Objects

When the source is a JSON object, JSON.parse by default returns a Ruby Hash:

json = '{"a": "foo", "b": 1, "c": 1.0, "d": 2.0e2, "e": true, "f": false, "g": null}'
ruby = JSON.parse(json)
ruby # => {"a"=>"foo", "b"=>1, "c"=>1.0, "d"=>200.0, "e"=>true, "f"=>false, "g"=>nil}
ruby.class # => Hash

The JSON object may contain nested arrays, objects, and scalars to any depth:

json = '{"foo": {"bar": 1, "baz": 2}, "bat": [0, 1, 2]}'
JSON.parse(json) # => {"foo"=>{"bar"=>1, "baz"=>2}, "bat"=>[0, 1, 2]}

Parsing JSON Scalars

When the source is a JSON scalar (not an array or object), JSON.parse returns a Ruby scalar.

String:

ruby = JSON.parse('"foo"')
ruby # => 'foo'
ruby.class # => String

Integer:

ruby = JSON.parse('1')
ruby # => 1
ruby.class # => Integer

Float:

ruby = JSON.parse('1.0')
ruby # => 1.0
ruby.class # => Float
ruby = JSON.parse('2.0e2')
ruby # => 200
ruby.class # => Float

Boolean:

ruby = JSON.parse('true')
ruby # => true
ruby.class # => TrueClass
ruby = JSON.parse('false')
ruby # => false
ruby.class # => FalseClass

Null:

ruby = JSON.parse('null')
ruby # => nil
ruby.class # => NilClass

Parsing Options

Input Options

Option max_nesting (Integer) specifies the maximum nesting depth allowed; defaults to 100; specify false to disable depth checking.

With the default, false:

source = '[0, [1, [2, [3]]]]'
ruby = JSON.parse(source)
ruby # => [0, [1, [2, [3]]]]

Too deep:

# Raises JSON::NestingError (nesting of 2 is too deep):
JSON.parse(source, {max_nesting: 1})

Bad value:

# Raises TypeError (wrong argument type Symbol (expected Fixnum)):
JSON.parse(source, {max_nesting: :foo})

Option allow_nan (boolean) specifies whether to allow NaN, Infinity, and MinusInfinity in source; defaults to false.

With the default, false:

# Raises JSON::ParserError (225: unexpected token at '[NaN]'):
JSON.parse('[NaN]')
# Raises JSON::ParserError (232: unexpected token at '[Infinity]'):
JSON.parse('[Infinity]')
# Raises JSON::ParserError (248: unexpected token at '[-Infinity]'):
JSON.parse('[-Infinity]')

Allow:

source = '[NaN, Infinity, -Infinity]'
ruby = JSON.parse(source, {allow_nan: true})
ruby # => [NaN, Infinity, -Infinity]
Output Options

Option symbolize_names (boolean) specifies whether returned Hash keys should be Symbols; defaults to false (use Strings).

With the default, false:

source = '{"a": "foo", "b": 1.0, "c": true, "d": false, "e": null}'
ruby = JSON.parse(source)
ruby # => {"a"=>"foo", "b"=>1.0, "c"=>true, "d"=>false, "e"=>nil}

Use Symbols:

ruby = JSON.parse(source, {symbolize_names: true})
ruby # => {:a=>"foo", :b=>1.0, :c=>true, :d=>false, :e=>nil}

Option object_class (Class) specifies the Ruby class to be used for each JSON object; defaults to Hash.

With the default, Hash:

source = '{"a": "foo", "b": 1.0, "c": true, "d": false, "e": null}'
ruby = JSON.parse(source)
ruby.class # => Hash

Use class OpenStruct:

ruby = JSON.parse(source, {object_class: OpenStruct})
ruby # => #<OpenStruct a="foo", b=1.0, c=true, d=false, e=nil>

Option array_class (Class) specifies the Ruby class to be used for each JSON array; defaults to Array.

With the default, Array:

source = '["foo", 1.0, true, false, null]'
ruby = JSON.parse(source)
ruby.class # => Array

Use class Set:

ruby = JSON.parse(source, {array_class: Set})
ruby # => #<Set: {"foo", 1.0, true, false, nil}>

Option create_additions (boolean) specifies whether to use JSON additions in parsing. See JSON Additions.

Generating JSON

To generate a Ruby String containing JSON data, use method JSON.generate(source, opts), where

Generating JSON from Arrays

When the source is a Ruby Array, JSON.generate returns a String containing a JSON array:

ruby = [0, 's', :foo]
json = JSON.generate(ruby)
json # => '[0,"s","foo"]'

The Ruby Array array may contain nested arrays, hashes, and scalars to any depth:

ruby = [0, [1, 2], {foo: 3, bar: 4}]
json = JSON.generate(ruby)
json # => '[0,[1,2],{"foo":3,"bar":4}]'

Generating JSON from Hashes

When the source is a Ruby Hash, JSON.generate returns a String containing a JSON object:

ruby = {foo: 0, bar: 's', baz: :bat}
json = JSON.generate(ruby)
json # => '{"foo":0,"bar":"s","baz":"bat"}'

The Ruby Hash array may contain nested arrays, hashes, and scalars to any depth:

ruby = {foo: [0, 1], bar: {baz: 2, bat: 3}, bam: :bad}
json = JSON.generate(ruby)
json # => '{"foo":[0,1],"bar":{"baz":2,"bat":3},"bam":"bad"}'

Generating JSON from Other Objects

When the source is neither an Array nor a Hash, the generated JSON data depends on the class of the source.

When the source is a Ruby Integer or Float, JSON.generate returns a String containing a JSON number:

JSON.generate(42) # => '42'
JSON.generate(0.42) # => '0.42'

When the source is a Ruby String, JSON.generate returns a String containing a JSON string (with double-quotes):

JSON.generate('A string') # => '"A string"'

When the source is true, false or nil, JSON.generate returns a String containing the corresponding JSON token:

JSON.generate(true) # => 'true'
JSON.generate(false) # => 'false'
JSON.generate(nil) # => 'null'

When the source is none of the above, JSON.generate returns a String containing a JSON string representation of the source:

JSON.generate(:foo) # => '"foo"'
JSON.generate(Complex(0, 0)) # => '"0+0i"'
JSON.generate(Dir.new('.')) # => '"#<Dir>"'

Generating Options

Input Options

Option allow_nan (boolean) specifies whether NaN, Infinity, and -Infinity may be generated; defaults to false.

With the default, false:

# Raises JSON::GeneratorError (920: NaN not allowed in JSON):
JSON.generate(JSON::NaN)
# Raises JSON::GeneratorError (917: Infinity not allowed in JSON):
JSON.generate(JSON::Infinity)
# Raises JSON::GeneratorError (917: -Infinity not allowed in JSON):
JSON.generate(JSON::MinusInfinity)

Allow:

ruby = [Float::NaN, Float::Infinity, Float::MinusInfinity]
JSON.generate(ruby, allow_nan: true) # => '[NaN,Infinity,-Infinity]'

Option max_nesting (Integer) specifies the maximum nesting depth in obj; defaults to 100.

With the default, 100:

obj = [[[[[[0]]]]]]
JSON.generate(obj) # => '[[[[[[0]]]]]]'

Too deep:

# Raises JSON::NestingError (nesting of 2 is too deep):
JSON.generate(obj, max_nesting: 2)
Output Options

The default formatting options generate the most compact JSON data, all on one line and with no whitespace.

You can use these formatting options to generate JSON data in a more open format, using whitespace. See also JSON.pretty_generate.

In this example, obj is used first to generate the shortest JSON data (no whitespace), then again with all formatting options specified:

obj = {foo: [:bar, :baz], bat: {bam: 0, bad: 1}}
json = JSON.generate(obj)
puts 'Compact:', json
opts = {
  array_nl: "\n",
  object_nl: "\n",
  indent: '  ',
  space_before: ' ',
  space: ' '
}
puts 'Open:', JSON.generate(obj, opts)

Output:

Compact:
{"foo":["bar","baz"],"bat":{"bam":0,"bad":1}}
Open:
{
  "foo" : [
    "bar",
    "baz"
],
  "bat" : {
    "bam" : 0,
    "bad" : 1
  }
}

JSON Additions

When you “round trip” a non-String object from Ruby to JSON and back, you have a new String, instead of the object you began with:

ruby0 = Range.new(0, 2)
json = JSON.generate(ruby0)
json # => '0..2"'
ruby1 = JSON.parse(json)
ruby1 # => '0..2'
ruby1.class # => String

You can use JSON additions to preserve the original object. The addition is an extension of a ruby class, so that:

This example shows a Range being generated into JSON and parsed back into Ruby, both without and with the addition for Range:

ruby = Range.new(0, 2)
# This passage does not use the addition for Range.
json0 = JSON.generate(ruby)
ruby0 = JSON.parse(json0)
# This passage uses the addition for Range.
require 'json/add/range'
json1 = JSON.generate(ruby)
ruby1 = JSON.parse(json1, create_additions: true)
# Make a nice display.
display = <<EOT
Generated JSON:
  Without addition:  #{json0} (#{json0.class})
  With addition:     #{json1} (#{json1.class})
Parsed JSON:
  Without addition:  #{ruby0.inspect} (#{ruby0.class})
  With addition:     #{ruby1.inspect} (#{ruby1.class})
EOT
puts display

This output shows the different results:

Generated JSON:
  Without addition:  "0..2" (String)
  With addition:     {"json_class":"Range","a":[0,2,false]} (String)
Parsed JSON:
  Without addition:  "0..2" (String)
  With addition:     0..2 (Range)

The JSON module includes additions for certain classes. You can also craft custom additions. See Custom JSON Additions.

Built-in Additions

The JSON module includes additions for certain classes. To use an addition, require its source:

To reduce punctuation clutter, the examples below show the generated JSON via puts, rather than the usual inspect,

BigDecimal:

require 'json/add/bigdecimal'
ruby0 = BigDecimal(0) # 0.0
json = JSON.generate(ruby0) # {"json_class":"BigDecimal","b":"27:0.0"}
ruby1 = JSON.parse(json, create_additions: true) # 0.0
ruby1.class # => BigDecimal

Complex:

require 'json/add/complex'
ruby0 = Complex(1+0i) # 1+0i
json = JSON.generate(ruby0) # {"json_class":"Complex","r":1,"i":0}
ruby1 = JSON.parse(json, create_additions: true) # 1+0i
ruby1.class # Complex

Date:

require 'json/add/date'
ruby0 = Date.today # 2020-05-02
json = JSON.generate(ruby0) # {"json_class":"Date","y":2020,"m":5,"d":2,"sg":2299161.0}
ruby1 = JSON.parse(json, create_additions: true) # 2020-05-02
ruby1.class # Date

DateTime:

require 'json/add/date_time'
ruby0 = DateTime.now # 2020-05-02T10:38:13-05:00
json = JSON.generate(ruby0) # {"json_class":"DateTime","y":2020,"m":5,"d":2,"H":10,"M":38,"S":13,"of":"-5/24","sg":2299161.0}
ruby1 = JSON.parse(json, create_additions: true) # 2020-05-02T10:38:13-05:00
ruby1.class # DateTime

Exception (and its subclasses including RuntimeError):

require 'json/add/exception'
ruby0 = Exception.new('A message') # A message
json = JSON.generate(ruby0) # {"json_class":"Exception","m":"A message","b":null}
ruby1 = JSON.parse(json, create_additions: true) # A message
ruby1.class # Exception
ruby0 = RuntimeError.new('Another message') # Another message
json = JSON.generate(ruby0) # {"json_class":"RuntimeError","m":"Another message","b":null}
ruby1 = JSON.parse(json, create_additions: true) # Another message
ruby1.class # RuntimeError

OpenStruct:

require 'json/add/ostruct'
ruby0 = OpenStruct.new(name: 'Matz', language: 'Ruby') # #<OpenStruct name="Matz", language="Ruby">
json = JSON.generate(ruby0) # {"json_class":"OpenStruct","t":{"name":"Matz","language":"Ruby"}}
ruby1 = JSON.parse(json, create_additions: true) # #<OpenStruct name="Matz", language="Ruby">
ruby1.class # OpenStruct

Range:

require 'json/add/range'
ruby0 = Range.new(0, 2) # 0..2
json = JSON.generate(ruby0) # {"json_class":"Range","a":[0,2,false]}
ruby1 = JSON.parse(json, create_additions: true) # 0..2
ruby1.class # Range

Rational:

require 'json/add/rational'
ruby0 = Rational(1, 3) # 1/3
json = JSON.generate(ruby0) # {"json_class":"Rational","n":1,"d":3}
ruby1 = JSON.parse(json, create_additions: true) # 1/3
ruby1.class # Rational

Regexp:

require 'json/add/regexp'
ruby0 = Regexp.new('foo') # (?-mix:foo)
json = JSON.generate(ruby0) # {"json_class":"Regexp","o":0,"s":"foo"}
ruby1 = JSON.parse(json, create_additions: true) # (?-mix:foo)
ruby1.class # Regexp

Set:

require 'json/add/set'
ruby0 = Set.new([0, 1, 2]) # #<Set: {0, 1, 2}>
json = JSON.generate(ruby0) # {"json_class":"Set","a":[0,1,2]}
ruby1 = JSON.parse(json, create_additions: true) # #<Set: {0, 1, 2}>
ruby1.class # Set

Struct:

require 'json/add/struct'
Customer = Struct.new(:name, :address) # Customer
ruby0 = Customer.new("Dave", "123 Main") # #<struct Customer name="Dave", address="123 Main">
json = JSON.generate(ruby0) # {"json_class":"Customer","v":["Dave","123 Main"]}
ruby1 = JSON.parse(json, create_additions: true) # #<struct Customer name="Dave", address="123 Main">
ruby1.class # Customer

Symbol:

require 'json/add/symbol'
ruby0 = :foo # foo
json = JSON.generate(ruby0) # {"json_class":"Symbol","s":"foo"}
ruby1 = JSON.parse(json, create_additions: true) # foo
ruby1.class # Symbol

Time:

require 'json/add/time'
ruby0 = Time.now # 2020-05-02 11:28:26 -0500
json = JSON.generate(ruby0) # {"json_class":"Time","s":1588436906,"n":840560000}
ruby1 = JSON.parse(json, create_additions: true) # 2020-05-02 11:28:26 -0500
ruby1.class # Time

Custom JSON Additions

In addition to the JSON additions provided, you can craft JSON additions of your own, either for Ruby built-in classes or for user-defined classes.

Here’s a user-defined class Foo:

class Foo
  attr_accessor :bar, :baz
  def initialize(bar, baz)
    self.bar = bar
    self.baz = baz
  end
end

Here’s the JSON addition for it:

# Extend class Foo with JSON addition.
class Foo
  # Serialize Foo object with its class name and arguments
  def to_json(*args)
    {
      JSON.create_id  => self.class.name,
      'a'             => [ bar, baz ]
    }.to_json(*args)
  end
  # Deserialize JSON string by constructing new Foo object with arguments.
  def self.json_create(object)
    new(*object['a'])
  end
end

Demonstration:

require 'json'
# This Foo object has no custom addition.
foo0 = Foo.new(0, 1)
json0 = JSON.generate(foo0)
obj0 = JSON.parse(json0)
# Lood the custom addition.
require_relative 'foo_addition'
# This foo has the custom addition.
foo1 = Foo.new(0, 1)
json1 = JSON.generate(foo1)
obj1 = JSON.parse(json1, create_additions: true)
#   Make a nice display.
display = <<EOT
Generated JSON:
  Without custom addition:  #{json0} (#{json0.class})
  With custom addition:     #{json1} (#{json1.class})
Parsed JSON:
  Without custom addition:  #{obj0.inspect} (#{obj0.class})
  With custom addition:     #{obj1.inspect} (#{obj1.class})
EOT
puts display

Output:

Generated JSON:
  Without custom addition:  "#<Foo:0x0000000006534e80>" (String)
  With custom addition:     {"json_class":"Foo","a":[0,1]} (String)
Parsed JSON:
  Without custom addition:  "#<Foo:0x0000000006534e80>" (String)
  With custom addition:     #<Foo:0x0000000006473bb8 @bar=0, @baz=1> (Foo)

Kanji Converter for Ruby.

The objspace library extends the ObjectSpace module and adds several methods to get internal statistic information about object/memory management.

You need to require 'objspace' to use this extension module.

Generally, you *SHOULD NOT* use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.

The ObjectSpace module contains a number of routines that interact with the garbage collection facility and allow you to traverse all living objects with an iterator.

ObjectSpace also provides support for object finalizers, procs that will be called when a specific object is about to be destroyed by garbage collection. See the documentation for ObjectSpace.define_finalizer for important information on how to use this method correctly.

a = "A"
b = "B"

ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" })

a = nil
b = nil

produces:

Finalizer two on 537763470
Finalizer one on 537763480

The Benchmark module provides methods to measure and report the time used to execute Ruby code.

The result:

              user     system      total        real
for:      1.010000   0.000000   1.010000 (  1.015688)
times:    1.000000   0.000000   1.000000 (  1.003611)
upto:     1.030000   0.000000   1.030000 (  1.028098)

The Forwardable module provides delegation of specified methods to a designated object, using the methods def_delegator and def_delegators.

For example, say you have a class RecordCollection which contains an array @records. You could provide the lookup method record_number(), which simply calls [] on the @records array, like this:

require 'forwardable'

class RecordCollection
  attr_accessor :records
  extend Forwardable
  def_delegator :@records, :[], :record_number
end

We can use the lookup method like so:

r = RecordCollection.new
r.records = [4,5,6]
r.record_number(0)  # => 4

Further, if you wish to provide the methods size, <<, and map, all of which delegate to @records, this is how you can do it:

class RecordCollection # re-open RecordCollection class
  def_delegators :@records, :size, :<<, :map
end

r = RecordCollection.new
r.records = [1,2,3]
r.record_number(0)   # => 1
r.size               # => 3
r << 4               # => [1, 2, 3, 4]
r.map { |x| x * 2 }  # => [2, 4, 6, 8]

You can even extend regular objects with Forwardable.

my_hash = Hash.new
my_hash.extend Forwardable              # prepare object for delegation
my_hash.def_delegator "STDOUT", "puts"  # add delegation for STDOUT.puts()
my_hash.puts "Howdy!"

Another example

You could use Forwardable as an alternative to inheritance, when you don’t want to inherit all methods from the superclass. For instance, here is how you might add a range of Array instance methods to a new class Queue:

class Queue
  extend Forwardable

  def initialize
    @q = [ ]    # prepare delegate object
  end

  # setup preferred interface, enq() and deq()...
  def_delegator :@q, :push, :enq
  def_delegator :@q, :shift, :deq

  # support some general Array methods that fit Queues well
  def_delegators :@q, :clear, :first, :push, :shift, :size
end

q = Thread::Queue.new
q.enq 1, 2, 3, 4, 5
q.push 6

q.shift    # => 1
while q.size > 0
  puts q.deq
end

q.enq "Ruby", "Perl", "Python"
puts q.first
q.clear
puts q.first

This should output:

2
3
4
5
6
Ruby
nil

Notes

Be advised, RDoc will not detect delegated methods.

forwardable.rb provides single-method delegation via the def_delegator and def_delegators methods. For full-class delegation via DelegateClass, see delegate.rb.

Search took: 20ms  ·  Total Results: 2583