Results for: "strip"

PStore implements a file based persistence mechanism based on a Hash. User code can store hierarchies of Ruby objects (values) into the data store file by name (keys). An object hierarchy may be just a single object. User code may later read values back from the data store or even update data, as needed.

The transactional behavior ensures that any changes succeed or fail together. This can be used to ensure that the data store is not left in a transitory state, where some values were updated but others were not.

Behind the scenes, Ruby objects are stored to the data store file with Marshal. That carries the usual limitations. Proc objects cannot be marshalled, for example.

Usage example:

require "pstore"

# a mock wiki object...
class WikiPage
  def initialize( page_name, author, contents )
    @page_name = page_name
    @revisions = Array.new

    add_revision(author, contents)
  end

  attr_reader :page_name

  def add_revision( author, contents )
    @revisions << { :created  => Time.now,
                    :author   => author,
                    :contents => contents }
  end

  def wiki_page_references
    [@page_name] + @revisions.last[:contents].scan(/\b(?:[A-Z]+[a-z]+){2,}/)
  end

  # ...
end

# create a new page...
home_page = WikiPage.new( "HomePage", "James Edward Gray II",
                          "A page about the JoysOfDocumentation..." )

# then we want to update page data and the index together, or not at all...
wiki = PStore.new("wiki_pages.pstore")
wiki.transaction do  # begin transaction; do all of this or none of it
  # store page...
  wiki[home_page.page_name] = home_page
  # ensure that an index has been created...
  wiki[:wiki_index] ||= Array.new
  # update wiki index...
  wiki[:wiki_index].push(*home_page.wiki_page_references)
end                   # commit changes to wiki data store file

### Some time later... ###

# read wiki data...
wiki.transaction(true) do  # begin read-only transaction, no changes allowed
  wiki.roots.each do |data_root_name|
    p data_root_name
    p wiki[data_root_name]
  end
end

Transaction modes

By default, file integrity is only ensured as long as the operating system (and the underlying hardware) doesn’t raise any unexpected I/O errors. If an I/O error occurs while PStore is writing to its file, then the file will become corrupted.

You can prevent this by setting pstore.ultra_safe = true. However, this results in a minor performance loss, and only works on platforms that support atomic file renames. Please consult the documentation for ultra_safe for details.

Needless to say, if you’re storing valuable data with PStore, then you should backup the PStore files from time to time.

The global value true is the only instance of class TrueClass and represents a logically true value in boolean expressions. The class provides operators allowing true to be used in logical expressions.

Document-class: TracePoint

A class that provides the functionality of Kernel#set_trace_func in a nice Object-Oriented API.

Example

We can use TracePoint to gather information specifically for exceptions:

trace = TracePoint.new(:raise) do |tp|
    p [tp.lineno, tp.event, tp.raised_exception]
end
#=> #<TracePoint:disabled>

trace.enable
#=> false

0 / 0
#=> [5, :raise, #<ZeroDivisionError: divided by 0>]

Events

If you don’t specify the type of events you want to listen for, TracePoint will include all available events.

Note do not depend on current event set, as this list is subject to change. Instead, it is recommended you specify the type of events you want to use.

To filter what is traced, you can pass any of the following as events:

:line

execute an expression or statement on a new line

:class

start a class or module definition

:end

finish a class or module definition

:call

call a Ruby method

:return

return from a Ruby method

:c_call

call a C-language routine

:c_return

return from a C-language routine

:raise

raise an exception

:b_call

event hook at block entry

:b_return

event hook at block ending

:a_call

event hook at all calls (call, b_call, and c_call)

:a_return

event hook at all returns (return, b_return, and c_return)

:thread_begin

event hook at thread beginning

:thread_end

event hook at thread ending

:fiber_switch

event hook at fiber switch

:script_compiled

new Ruby code compiled (with eval, load or require)

This module provides a framework for message digest libraries.

You may want to look at OpenSSL::Digest as it supports more algorithms.

A cryptographic hash function is a procedure that takes data and returns a fixed bit string: the hash value, also known as digest. Hash functions are also called one-way functions, it is easy to compute a digest from a message, but it is infeasible to generate a message from a digest.

Examples

require 'digest'

# Compute a complete digest
Digest::SHA256.digest 'message'       #=> "\xABS\n\x13\xE4Y..."

sha256 = Digest::SHA256.new
sha256.digest 'message'               #=> "\xABS\n\x13\xE4Y..."

# Other encoding formats
Digest::SHA256.hexdigest 'message'    #=> "ab530a13e459..."
Digest::SHA256.base64digest 'message' #=> "q1MKE+RZFJgr..."

# Compute digest by chunks
md5 = Digest::MD5.new
md5.update 'message1'
md5 << 'message2'                     # << is an alias for update

md5.hexdigest                         #=> "94af09c09bb9..."

# Compute digest for a file
sha256 = Digest::SHA256.file 'testfile'
sha256.hexdigest

Additionally digests can be encoded in “bubble babble” format as a sequence of consonants and vowels which is more recognizable and comparable than a hexadecimal digest.

require 'digest/bubblebabble'

Digest::SHA256.bubblebabble 'message' #=> "xopoh-fedac-fenyh-..."

See the bubble babble specification at web.mit.edu/kenta/www/one/bubblebabble/spec/jrtrjwzi/draft-huima-01.txt.

Digest algorithms

Different digest algorithms (or hash functions) are available:

MD5

See RFC 1321 The MD5 Message-Digest Algorithm

RIPEMD-160

As Digest::RMD160. See homes.esat.kuleuven.be/~bosselae/ripemd160.html.

SHA1

See FIPS 180 Secure Hash Standard.

SHA2 family

See FIPS 180 Secure Hash Standard which defines the following algorithms:

  • SHA512

  • SHA384

  • SHA256

The latest versions of the FIPS publications can be found here: csrc.nist.gov/publications/PubsFIPS.html.

FileTest implements file test operations similar to those used in File::Stat. It exists as a standalone module, and its methods are also insinuated into the File class. (Note that this is not done by inclusion: the interpreter cheats).

URI

URI is a module providing classes to handle Uniform Resource Identifiers (RFC2396).

Features

Basic example

require 'uri'

uri = URI("http://foo.com/posts?id=30&limit=5#time=1305298413")
#=> #<URI::HTTP http://foo.com/posts?id=30&limit=5#time=1305298413>

uri.scheme    #=> "http"
uri.host      #=> "foo.com"
uri.path      #=> "/posts"
uri.query     #=> "id=30&limit=5"
uri.fragment  #=> "time=1305298413"

uri.to_s      #=> "http://foo.com/posts?id=30&limit=5#time=1305298413"

Adding custom URIs

module URI
  class RSYNC < Generic
    DEFAULT_PORT = 873
  end
  register_scheme 'RSYNC', RSYNC
end
#=> URI::RSYNC

URI.scheme_list
#=> {"FILE"=>URI::File, "FTP"=>URI::FTP, "HTTP"=>URI::HTTP,
#    "HTTPS"=>URI::HTTPS, "LDAP"=>URI::LDAP, "LDAPS"=>URI::LDAPS,
#    "MAILTO"=>URI::MailTo, "RSYNC"=>URI::RSYNC}

uri = URI("rsync://rsync.foo.com")
#=> #<URI::RSYNC rsync://rsync.foo.com>

RFC References

A good place to view an RFC spec is www.ietf.org/rfc.html.

Here is a list of all related RFC’s:

Class tree

Copyright Info

Author

Akira Yamada <akira@ruby-lang.org>

Documentation

Akira Yamada <akira@ruby-lang.org> Dmitry V. Sabanin <sdmitry@lrn.ru> Vincent Batts <vbatts@hashbangbash.com>

License

Copyright © 2001 akira yamada <akira@ruby-lang.org> You can redistribute it and/or modify it under the same term as Ruby.

OpenURI is an easy-to-use wrapper for Net::HTTP, Net::HTTPS and Net::FTP.

Example

It is possible to open an http, https or ftp URL as though it were a file:

URI.open("http://www.ruby-lang.org/") {|f|
  f.each_line {|line| p line}
}

The opened file has several getter methods for its meta-information, as follows, since it is extended by OpenURI::Meta.

URI.open("http://www.ruby-lang.org/en") {|f|
  f.each_line {|line| p line}
  p f.base_uri         # <URI::HTTP:0x40e6ef2 URL:http://www.ruby-lang.org/en/>
  p f.content_type     # "text/html"
  p f.charset          # "iso-8859-1"
  p f.content_encoding # []
  p f.last_modified    # Thu Dec 05 02:45:02 UTC 2002
}

Additional header fields can be specified by an optional hash argument.

URI.open("http://www.ruby-lang.org/en/",
  "User-Agent" => "Ruby/#{RUBY_VERSION}",
  "From" => "foo@bar.invalid",
  "Referer" => "http://www.ruby-lang.org/") {|f|
  # ...
}

The environment variables such as http_proxy, https_proxy and ftp_proxy are in effect by default. Here we disable proxy:

URI.open("http://www.ruby-lang.org/en/", :proxy => nil) {|f|
  # ...
}

See OpenURI::OpenRead.open and URI.open for more on available options.

URI objects can be opened in a similar way.

uri = URI.parse("http://www.ruby-lang.org/en/")
uri.open {|f|
  # ...
}

URI objects can be read directly. The returned string is also extended by OpenURI::Meta.

str = uri.read
p str.base_uri
Author

Tanaka Akira <akr@m17n.org>

A module to implement the Linda distributed computing paradigm in Ruby.

Rinda is part of DRb (dRuby).

Example(s)

See the sample/drb/ directory in the Ruby distribution, from 1.8.2 onwards.

No documentation available
No documentation available
No documentation available
No documentation available

WIN32OLE_VARIABLE objects represent OLE variable information.

WIN32OLE_VARIANT objects represents OLE variant.

Win32OLE converts Ruby object into OLE variant automatically when invoking OLE methods. If OLE method requires the argument which is different from the variant by automatic conversion of Win32OLE, you can convert the specified variant type by using WIN32OLE_VARIANT class.

param = WIN32OLE_VARIANT.new(10, WIN32OLE::VARIANT::VT_R4)
oleobj.method(param)

WIN32OLE_VARIANT does not support VT_RECORD variant. Use WIN32OLE_RECORD class instead of WIN32OLE_VARIANT if the VT_RECORD variant is needed.

No documentation available

The parent class for all constructed encodings. The value attribute of a Constructive is always an Array. Attributes are the same as for ASN1Data, with the addition of tagging.

SET and SEQUENCE

Most constructed encodings come in the form of a SET or a SEQUENCE. These encodings are represented by one of the two sub-classes of Constructive:

Please note that tagged sequences and sets are still parsed as instances of ASN1Data. Find further details on tagged values there.

Example - constructing a SEQUENCE

int = OpenSSL::ASN1::Integer.new(1)
str = OpenSSL::ASN1::PrintableString.new('abc')
sequence = OpenSSL::ASN1::Sequence.new( [ int, str ] )

Example - constructing a SET

int = OpenSSL::ASN1::Integer.new(1)
str = OpenSSL::ASN1::PrintableString.new('abc')
set = OpenSSL::ASN1::Set.new( [ int, str ] )
No documentation available
No documentation available

Represents a YAML stream. This is the root node for any YAML parse tree. This node must have one or more child nodes. The only valid child node for a Psych::Nodes::Stream node is Psych::Nodes::Document.

No documentation available

The TrustDir manages the trusted certificates for gem signature verification.

This is not an existing class, but documentation of the interface that Scheduler object should comply to in order to be used as argument to Fiber.scheduler and handle non-blocking fibers. See also the “Non-blocking fibers” section in Fiber class docs for explanations of some concepts.

Scheduler’s behavior and usage are expected to be as follows:

A typical implementation would probably rely for this closing loop on a gem like EventMachine or Async.

This way concurrent execution will be achieved transparently for every individual Fiber’s code.

Hook methods are:

When not specified otherwise, the hook implementations are mandatory: if they are not implemented, the methods trying to call hook will fail. To provide backward compatibility, in the future hooks will be optional (if they are not implemented, due to the scheduler being created for the older Ruby version, the code which needs this hook will not fail, and will just behave in a blocking fashion).

It is also strongly recommended that the scheduler implements the fiber method, which is delegated to by Fiber.schedule.

Sample toy implementation of the scheduler can be found in Ruby’s code, in test/fiber/scheduler.rb

Enumerator::ArithmeticSequence is a subclass of Enumerator, that is a representation of sequences of numbers with common difference. Instances of this class can be generated by the Range#step and Numeric#step methods.

The class can be used for slicing Array (see Array#slice) or custom collections.

This exception is raised if the nesting of parsed data structures is too deep.

No documentation available
Search took: 9ms  ·  Total Results: 1486