RSA
is an asymmetric public key algorithm that has been formalized in RFC 3447. It is in widespread use in public key infrastructures (PKI) where certificates (cf. OpenSSL::X509::Certificate
) often are issued on the basis of a public/private RSA
key pair. RSA
is used in a wide field of applications such as secure (symmetric) key exchange, e.g. when establishing a secure TLS/SSL connection. It is also used in various digital signature schemes.
# File tmp/rubies/ruby-3.1.3/ext/openssl/lib/openssl/pkey.rb, line 343
def generate(size, exp = 0x10001, &blk)
OpenSSL::PKey.generate_key("RSA", {
"rsa_keygen_bits" => size,
"rsa_keygen_pubexp" => exp,
}, &blk)
end
Generates an RSA keypair.
See also OpenSSL::PKey.generate_key
.
size
-
The desired key size in bits.
exponent
-
An odd
Integer
, normally 3, 17, or 65537.
static VALUE
ossl_rsa_initialize(int argc, VALUE *argv, VALUE self)
{
EVP_PKEY *pkey;
RSA *rsa;
BIO *in = NULL;
VALUE arg, pass;
int type;
TypedData_Get_Struct(self, EVP_PKEY, &ossl_evp_pkey_type, pkey);
if (pkey)
rb_raise(rb_eTypeError, "pkey already initialized");
/* The RSA.new(size, generator) form is handled by lib/openssl/pkey.rb */
rb_scan_args(argc, argv, "02", &arg, &pass);
if (argc == 0) {
rsa = RSA_new();
if (!rsa)
ossl_raise(eRSAError, "RSA_new");
goto legacy;
}
pass = ossl_pem_passwd_value(pass);
arg = ossl_to_der_if_possible(arg);
in = ossl_obj2bio(&arg);
/* First try RSAPublicKey format */
rsa = d2i_RSAPublicKey_bio(in, NULL);
if (rsa)
goto legacy;
OSSL_BIO_reset(in);
rsa = PEM_read_bio_RSAPublicKey(in, NULL, NULL, NULL);
if (rsa)
goto legacy;
OSSL_BIO_reset(in);
/* Use the generic routine */
pkey = ossl_pkey_read_generic(in, pass);
BIO_free(in);
if (!pkey)
ossl_raise(eRSAError, "Neither PUB key nor PRIV key");
type = EVP_PKEY_base_id(pkey);
if (type != EVP_PKEY_RSA) {
EVP_PKEY_free(pkey);
rb_raise(eRSAError, "incorrect pkey type: %s", OBJ_nid2sn(type));
}
RTYPEDDATA_DATA(self) = pkey;
return self;
legacy:
BIO_free(in);
pkey = EVP_PKEY_new();
if (!pkey || EVP_PKEY_assign_RSA(pkey, rsa) != 1) {
EVP_PKEY_free(pkey);
RSA_free(rsa);
ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
}
RTYPEDDATA_DATA(self) = pkey;
return self;
}
Generates or loads an RSA keypair.
If called without arguments, creates a new instance with no key components set. They can be set individually by set_key
, set_factors
, and set_crt_params
.
If called with a String
, tries to parse as DER or PEM encoding of an RSA key. Note that, if passphrase is not specified but the key is encrypted with a passphrase, OpenSSL will prompt for it. See also OpenSSL::PKey.read
which can parse keys of any kinds.
If called with a number, generates a new key pair. This form works as an alias of RSA.generate
.
Examples:
OpenSSL::PKey::RSA.new 2048 OpenSSL::PKey::RSA.new File.read 'rsa.pem' OpenSSL::PKey::RSA.new File.read('rsa.pem'), 'my pass phrase'
static VALUE
ossl_rsa_export(int argc, VALUE *argv, VALUE self)
{
if (can_export_rsaprivatekey(self))
return ossl_pkey_export_traditional(argc, argv, self, 0);
else
return ossl_pkey_export_spki(self, 0);
}
Outputs this keypair in PEM encoding. If cipher and pass_phrase are given they will be used to encrypt the key. cipher must be an OpenSSL::Cipher
instance.
HAVE_EVP_PKEY_DUP
static VALUE
ossl_rsa_initialize_copy(VALUE self, VALUE other)
{
EVP_PKEY *pkey;
RSA *rsa, *rsa_new;
TypedData_Get_Struct(self, EVP_PKEY, &ossl_evp_pkey_type, pkey);
if (pkey)
rb_raise(rb_eTypeError, "pkey already initialized");
GetRSA(other, rsa);
rsa_new = (RSA *)ASN1_dup((i2d_of_void *)i2d_RSAPrivateKey,
(d2i_of_void *)d2i_RSAPrivateKey,
(char *)rsa);
if (!rsa_new)
ossl_raise(eRSAError, "ASN1_dup");
pkey = EVP_PKEY_new();
if (!pkey || EVP_PKEY_assign_RSA(pkey, rsa_new) != 1) {
RSA_free(rsa_new);
ossl_raise(eRSAError, "EVP_PKEY_assign_RSA");
}
RTYPEDDATA_DATA(self) = pkey;
return self;
}
static VALUE
ossl_rsa_get_params(VALUE self)
{
RSA *rsa;
VALUE hash;
const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;
GetRSA(self, rsa);
RSA_get0_key(rsa, &n, &e, &d);
RSA_get0_factors(rsa, &p, &q);
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
hash = rb_hash_new();
rb_hash_aset(hash, rb_str_new2("n"), ossl_bn_new(n));
rb_hash_aset(hash, rb_str_new2("e"), ossl_bn_new(e));
rb_hash_aset(hash, rb_str_new2("d"), ossl_bn_new(d));
rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(p));
rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(q));
rb_hash_aset(hash, rb_str_new2("dmp1"), ossl_bn_new(dmp1));
rb_hash_aset(hash, rb_str_new2("dmq1"), ossl_bn_new(dmq1));
rb_hash_aset(hash, rb_str_new2("iqmp"), ossl_bn_new(iqmp));
return hash;
}
THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!
Stores all parameters of key to the hash. The hash has keys ‘n’, ‘e’, ‘d’, ‘p’, ‘q’, ‘dmp1’, ‘dmq1’, ‘iqmp’.
Don’t use :-)) (It’s up to you)
static VALUE
ossl_rsa_is_private(VALUE self)
{
RSA *rsa;
GetRSA(self, rsa);
return RSA_PRIVATE(self, rsa) ? Qtrue : Qfalse;
}
Does this keypair contain a private key?
# File tmp/rubies/ruby-3.1.3/ext/openssl/lib/openssl/pkey.rb, line 435
def private_decrypt(data, padding = PKCS1_PADDING)
n or raise OpenSSL::PKey::RSAError, "incomplete RSA"
private? or raise OpenSSL::PKey::RSAError, "private key needed."
begin
decrypt(data, {
"rsa_padding_mode" => translate_padding_mode(padding),
})
rescue OpenSSL::PKey::PKeyError
raise OpenSSL::PKey::RSAError, $!.message
end
end
Decrypt string
, which has been encrypted with the public key, with the private key. padding
defaults to PKCS1_PADDING
.
Deprecated in version 3.0. Consider using PKey::PKey#encrypt
and PKey::PKey#decrypt
instead.
# File tmp/rubies/ruby-3.1.3/ext/openssl/lib/openssl/pkey.rb, line 372
def private_encrypt(string, padding = PKCS1_PADDING)
n or raise OpenSSL::PKey::RSAError, "incomplete RSA"
private? or raise OpenSSL::PKey::RSAError, "private key needed."
begin
sign_raw(nil, string, {
"rsa_padding_mode" => translate_padding_mode(padding),
})
rescue OpenSSL::PKey::PKeyError
raise OpenSSL::PKey::RSAError, $!.message
end
end
Encrypt string
with the private key. padding
defaults to PKCS1_PADDING
. The encrypted string output can be decrypted using public_decrypt
.
Deprecated in version 3.0. Consider using PKey::PKey#sign_raw
and PKey::PKey#verify_raw
, and PKey::PKey#verify_recover
instead.
static VALUE
ossl_rsa_is_public(VALUE self)
{
RSA *rsa;
GetRSA(self, rsa);
/*
* This method should check for n and e. BUG.
*/
(void)rsa;
return Qtrue;
}
The return value is always true
since every private key is also a public key.
# File tmp/rubies/ruby-3.1.3/ext/openssl/lib/openssl/pkey.rb, line 394
def public_decrypt(string, padding = PKCS1_PADDING)
n or raise OpenSSL::PKey::RSAError, "incomplete RSA"
begin
verify_recover(nil, string, {
"rsa_padding_mode" => translate_padding_mode(padding),
})
rescue OpenSSL::PKey::PKeyError
raise OpenSSL::PKey::RSAError, $!.message
end
end
Decrypt string
, which has been encrypted with the private key, with the public key. padding
defaults to PKCS1_PADDING
.
Deprecated in version 3.0. Consider using PKey::PKey#sign_raw
and PKey::PKey#verify_raw
, and PKey::PKey#verify_recover
instead.
# File tmp/rubies/ruby-3.1.3/ext/openssl/lib/openssl/pkey.rb, line 415
def public_encrypt(data, padding = PKCS1_PADDING)
n or raise OpenSSL::PKey::RSAError, "incomplete RSA"
begin
encrypt(data, {
"rsa_padding_mode" => translate_padding_mode(padding),
})
rescue OpenSSL::PKey::PKeyError
raise OpenSSL::PKey::RSAError, $!.message
end
end
Encrypt string
with the public key. padding
defaults to PKCS1_PADDING
. The encrypted string output can be decrypted using private_decrypt
.
Deprecated in version 3.0. Consider using PKey::PKey#encrypt
and PKey::PKey#decrypt
instead.
# File tmp/rubies/ruby-3.1.3/ext/openssl/lib/openssl/pkey.rb, line 327
def public_key
OpenSSL::PKey.read(public_to_der)
end
Returns a new RSA
instance that carries just the public key components.
This method is provided for backwards compatibility. In most cases, there is no need to call this method.
For the purpose of serializing the public key, to PEM or DER encoding of X.509 SubjectPublicKeyInfo format, check PKey#public_to_pem
and PKey#public_to_der
.
Sets dmp1, dmq1, iqmp for the RSA
instance. They are calculated by d mod (p - 1)
, d mod (q - 1)
and q^(-1) mod p
respectively.
Sets p, q for the RSA
instance.
Sets n, e, d for the RSA
instance.
static VALUE
ossl_rsa_sign_pss(int argc, VALUE *argv, VALUE self)
{
VALUE digest, data, options, kwargs[2], signature;
static ID kwargs_ids[2];
EVP_PKEY *pkey;
EVP_PKEY_CTX *pkey_ctx;
const EVP_MD *md, *mgf1md;
EVP_MD_CTX *md_ctx;
size_t buf_len;
int salt_len;
if (!kwargs_ids[0]) {
kwargs_ids[0] = rb_intern_const("salt_length");
kwargs_ids[1] = rb_intern_const("mgf1_hash");
}
rb_scan_args(argc, argv, "2:", &digest, &data, &options);
rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
if (kwargs[0] == ID2SYM(rb_intern("max")))
salt_len = -2; /* RSA_PSS_SALTLEN_MAX_SIGN */
else if (kwargs[0] == ID2SYM(rb_intern("digest")))
salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
else
salt_len = NUM2INT(kwargs[0]);
mgf1md = ossl_evp_get_digestbyname(kwargs[1]);
pkey = GetPrivPKeyPtr(self);
buf_len = EVP_PKEY_size(pkey);
md = ossl_evp_get_digestbyname(digest);
StringValue(data);
signature = rb_str_new(NULL, (long)buf_len);
md_ctx = EVP_MD_CTX_new();
if (!md_ctx)
goto err;
if (EVP_DigestSignInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
goto err;
if (EVP_DigestSignUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
goto err;
if (EVP_DigestSignFinal(md_ctx, (unsigned char *)RSTRING_PTR(signature), &buf_len) != 1)
goto err;
rb_str_set_len(signature, (long)buf_len);
EVP_MD_CTX_free(md_ctx);
return signature;
err:
EVP_MD_CTX_free(md_ctx);
ossl_raise(eRSAError, NULL);
}
Signs data using the Probabilistic Signature Scheme (RSA-PSS) and returns the calculated signature.
RSAError
will be raised if an error occurs.
See verify_pss
for the verification operation.
Parameters
- digest
-
A
String
containing the message digest algorithm name. - data
-
A
String
. The data to be signed. - salt_length
-
The length in octets of the salt. Two special values are reserved:
:digest
means the digest length, and:max
means the maximum possible length for the combination of the private key and the selected message digest algorithm. - mgf1_hash
-
The hash algorithm used in MGF1 (the currently supported mask generation function (MGF)).
Example
data = "Sign me!" pkey = OpenSSL::PKey::RSA.new(2048) signature = pkey.sign_pss("SHA256", data, salt_length: :max, mgf1_hash: "SHA256") pub_key = OpenSSL::PKey.read(pkey.public_to_der) puts pub_key.verify_pss("SHA256", signature, data, salt_length: :auto, mgf1_hash: "SHA256") # => true
static VALUE
ossl_rsa_to_der(VALUE self)
{
if (can_export_rsaprivatekey(self))
return ossl_pkey_export_traditional(0, NULL, self, 1);
else
return ossl_pkey_export_spki(self, 1);
}
Outputs this keypair in DER encoding.
# File tmp/rubies/ruby-3.1.3/ext/openssl/lib/openssl/pkey.rb, line 452
def translate_padding_mode(num)
case num
when PKCS1_PADDING
"pkcs1"
when SSLV23_PADDING
"sslv23"
when NO_PADDING
"none"
when PKCS1_OAEP_PADDING
"oaep"
else
raise OpenSSL::PKey::PKeyError, "unsupported padding mode"
end
end
static VALUE
ossl_rsa_verify_pss(int argc, VALUE *argv, VALUE self)
{
VALUE digest, signature, data, options, kwargs[2];
static ID kwargs_ids[2];
EVP_PKEY *pkey;
EVP_PKEY_CTX *pkey_ctx;
const EVP_MD *md, *mgf1md;
EVP_MD_CTX *md_ctx;
int result, salt_len;
if (!kwargs_ids[0]) {
kwargs_ids[0] = rb_intern_const("salt_length");
kwargs_ids[1] = rb_intern_const("mgf1_hash");
}
rb_scan_args(argc, argv, "3:", &digest, &signature, &data, &options);
rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs);
if (kwargs[0] == ID2SYM(rb_intern("auto")))
salt_len = -2; /* RSA_PSS_SALTLEN_AUTO */
else if (kwargs[0] == ID2SYM(rb_intern("digest")))
salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */
else
salt_len = NUM2INT(kwargs[0]);
mgf1md = ossl_evp_get_digestbyname(kwargs[1]);
GetPKey(self, pkey);
md = ossl_evp_get_digestbyname(digest);
StringValue(signature);
StringValue(data);
md_ctx = EVP_MD_CTX_new();
if (!md_ctx)
goto err;
if (EVP_DigestVerifyInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1)
goto err;
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1)
goto err;
if (EVP_DigestVerifyUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1)
goto err;
result = EVP_DigestVerifyFinal(md_ctx,
(unsigned char *)RSTRING_PTR(signature),
RSTRING_LEN(signature));
switch (result) {
case 0:
ossl_clear_error();
EVP_MD_CTX_free(md_ctx);
return Qfalse;
case 1:
EVP_MD_CTX_free(md_ctx);
return Qtrue;
default:
goto err;
}
err:
EVP_MD_CTX_free(md_ctx);
ossl_raise(eRSAError, NULL);
}
Verifies data using the Probabilistic Signature Scheme (RSA-PSS).
The return value is true
if the signature is valid, false
otherwise. RSAError
will be raised if an error occurs.
See sign_pss
for the signing operation and an example code.
Parameters
- digest
-
A
String
containing the message digest algorithm name. - data
-
A
String
. The data to be signed. - salt_length
-
The length in octets of the salt. Two special values are reserved:
:digest
means the digest length, and:auto
means automatically determining the length based on the signature. - mgf1_hash
-
The hash algorithm used in MGF1.