Results for: "fnmatch"

Returns true if path matches against pattern. The pattern is not a regular expression; instead it follows rules similar to shell filename globbing. It may contain the following metacharacters:

*

Matches any file. Can be restricted by other values in the glob. Equivalent to / .* /x in regexp.

*

Matches all files regular files

c*

Matches all files beginning with c

*c

Matches all files ending with c

*c*

Matches all files that have c in them (including at the beginning or end).

To match hidden files (that start with a . set the File::FNM_DOTMATCH flag.

**

Matches directories recursively or files expansively.

?

Matches any one character. Equivalent to /.{1}/ in regexp.

[set]

Matches any one character in set. Behaves exactly like character sets in Regexp, including set negation ([^a-z]).

\

Escapes the next metacharacter.

{a,b}

Matches pattern a and pattern b if File::FNM_EXTGLOB flag is enabled. Behaves like a Regexp union ((?:a|b)).

flags is a bitwise OR of the FNM_XXX constants. The same glob pattern and flags are used by Dir::glob.

Examples:

File.fnmatch('cat',       'cat')        #=> true  # match entire string
File.fnmatch('cat',       'category')   #=> false # only match partial string

File.fnmatch('c{at,ub}s', 'cats')                    #=> false # { } isn't supported by default
File.fnmatch('c{at,ub}s', 'cats', File::FNM_EXTGLOB) #=> true  # { } is supported on FNM_EXTGLOB

File.fnmatch('c?t',     'cat')          #=> true  # '?' match only 1 character
File.fnmatch('c??t',    'cat')          #=> false # ditto
File.fnmatch('c*',      'cats')         #=> true  # '*' match 0 or more characters
File.fnmatch('c*t',     'c/a/b/t')      #=> true  # ditto
File.fnmatch('ca[a-z]', 'cat')          #=> true  # inclusive bracket expression
File.fnmatch('ca[^t]',  'cat')          #=> false # exclusive bracket expression ('^' or '!')

File.fnmatch('cat', 'CAT')                     #=> false # case sensitive
File.fnmatch('cat', 'CAT', File::FNM_CASEFOLD) #=> true  # case insensitive

File.fnmatch('?',   '/', File::FNM_PATHNAME)  #=> false # wildcard doesn't match '/' on FNM_PATHNAME
File.fnmatch('*',   '/', File::FNM_PATHNAME)  #=> false # ditto
File.fnmatch('[/]', '/', File::FNM_PATHNAME)  #=> false # ditto

File.fnmatch('\?',   '?')                       #=> true  # escaped wildcard becomes ordinary
File.fnmatch('\a',   'a')                       #=> true  # escaped ordinary remains ordinary
File.fnmatch('\a',   '\a', File::FNM_NOESCAPE)  #=> true  # FNM_NOESCAPE makes '\' ordinary
File.fnmatch('[\?]', '?')                       #=> true  # can escape inside bracket expression

File.fnmatch('*',   '.profile')                      #=> false # wildcard doesn't match leading
File.fnmatch('*',   '.profile', File::FNM_DOTMATCH)  #=> true  # period by default.
File.fnmatch('.*',  '.profile')                      #=> true

rbfiles = '**' '/' '*.rb' # you don't have to do like this. just write in single string.
File.fnmatch(rbfiles, 'main.rb')                    #=> false
File.fnmatch(rbfiles, './main.rb')                  #=> false
File.fnmatch(rbfiles, 'lib/song.rb')                #=> true
File.fnmatch('**.rb', 'main.rb')                    #=> true
File.fnmatch('**.rb', './main.rb')                  #=> false
File.fnmatch('**.rb', 'lib/song.rb')                #=> true
File.fnmatch('*',           'dave/.profile')                      #=> true

pattern = '*' '/' '*'
File.fnmatch(pattern, 'dave/.profile', File::FNM_PATHNAME)  #=> false
File.fnmatch(pattern, 'dave/.profile', File::FNM_PATHNAME | File::FNM_DOTMATCH) #=> true

pattern = '**' '/' 'foo'
File.fnmatch(pattern, 'a/b/c/foo', File::FNM_PATHNAME)     #=> true
File.fnmatch(pattern, '/a/b/c/foo', File::FNM_PATHNAME)    #=> true
File.fnmatch(pattern, 'c:/a/b/c/foo', File::FNM_PATHNAME)  #=> true
File.fnmatch(pattern, 'a/.b/c/foo', File::FNM_PATHNAME)    #=> false
File.fnmatch(pattern, 'a/.b/c/foo', File::FNM_PATHNAME | File::FNM_DOTMATCH) #=> true

Return true if the receiver matches the given pattern.

See File.fnmatch.

MatchData encapsulates the result of matching a Regexp against string. It is returned by Regexp#match and String#match, and also stored in a global variable returned by Regexp.last_match.

Usage:

url = 'https://docs.ruby-lang.org/en/2.5.0/MatchData.html'
m = url.match(/(\d\.?)+/)   # => #<MatchData "2.5.0" 1:"0">
m.string                    # => "https://docs.ruby-lang.org/en/2.5.0/MatchData.html"
m.regexp                    # => /(\d\.?)+/
# entire matched substring:
m[0]                        # => "2.5.0"

# Working with unnamed captures
m = url.match(%r{([^/]+)/([^/]+)\.html$})
m.captures                  # => ["2.5.0", "MatchData"]
m[1]                        # => "2.5.0"
m.values_at(1, 2)           # => ["2.5.0", "MatchData"]

# Working with named captures
m = url.match(%r{(?<version>[^/]+)/(?<module>[^/]+)\.html$})
m.captures                  # => ["2.5.0", "MatchData"]
m.named_captures            # => {"version"=>"2.5.0", "module"=>"MatchData"}
m[:version]                 # => "2.5.0"
m.values_at(:version, :module)
                            # => ["2.5.0", "MatchData"]
# Numerical indexes are working, too
m[1]                        # => "2.5.0"
m.values_at(1, 2)           # => ["2.5.0", "MatchData"]

Global variables equivalence

Parts of last MatchData (returned by Regexp.last_match) are also aliased as global variables:

See also “Special global variables” section in Regexp documentation.

The Matrix class represents a mathematical matrix. It provides methods for creating matrices, operating on them arithmetically and algebraically, and determining their mathematical properties such as trace, rank, inverse, determinant, or eigensystem.

Raised when attempting to convert special float values (in particular Infinity or NaN) to numerical classes which don’t support them.

Float::INFINITY.to_r   #=> FloatDomainError: Infinity

Provides mathematical functions.

Example:

require "bigdecimal/math"

include BigMath

a = BigDecimal((PI(100)/2).to_s)
puts sin(a,100) # => 0.99999999999999999999......e0

The Benchmark module provides methods to measure and report the time used to execute Ruby code.

The result:

              user     system      total        real
for:      1.010000   0.000000   1.010000 (  1.015688)
times:    1.000000   0.000000   1.000000 (  1.003611)
upto:     1.030000   0.000000   1.030000 (  1.028098)

Trigonometric and transcendental functions for complex numbers.

CMath is a library that provides trigonometric and transcendental functions for complex numbers. The functions in this module accept integers, floating-point numbers or complex numbers as arguments.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They would rather have Math.sqrt(-1) raise an exception than return a complex number.

For more information you can see Complex class.

Usage

To start using this library, simply require cmath library:

require "cmath"

mkmf.rb is used by Ruby C extensions to generate a Makefile which will correctly compile and link the C extension to Ruby and a third-party library.

The Math module contains module functions for basic trigonometric and transcendental functions. See class Float for a list of constants that define Ruby’s floating point accuracy.

Domains and codomains are given only for real (not complex) numbers.

Generated when trying to lookup a gem to indicate that the gem was found, but that it isn’t usable on the current platform.

fetch and install read these and report them to the user to aid in figuring out why a gem couldn’t be installed.

Raised when a gem dependencies file specifies a ruby version that does not match the current version.

No documentation available
No documentation available

Default formatter for log messages.

No documentation available
No documentation available

Map from option/keyword string to object with completion.

Individual switch class. Not important to the user.

Defined within Switch are several Switch-derived classes: NoArgument, RequiredArgument, etc.

An implementation of PseudoPrimeGenerator.

Uses EratosthenesSieve.

The command manager registers and installs all the individual sub-commands supported by the gem command.

Extra commands can be provided by writing a rubygems_plugin.rb file in an installed gem. You should register your command against the Gem::CommandManager instance, like this:

# file rubygems_plugin.rb
require 'rubygems/command_manager'

Gem::CommandManager.instance.register_command :edit

You should put the implementation of your command in rubygems/commands.

# file rubygems/commands/edit_command.rb
class Gem::Commands::EditCommand < Gem::Command
  # ...
end

See Gem::Command for instructions on writing gem commands.

An error that indicates we weren’t able to fetch some data from a source

Used to raise parsing and loading errors

RemoteFetcher handles the details of fetching gems and gem information from a remote source.

SpecFetcher handles metadata updates from remote gem repositories.

Search took: 12ms  ·  Total Results: 2158