Results for: "Pathname"

A mixin that provides methods for parsing C struct and prototype signatures.

Example

require 'fiddle/import'

include Fiddle::CParser
  #=> Object

parse_ctype('int')
  #=> Fiddle::TYPE_INT

parse_struct_signature(['int i', 'char c'])
  #=> [[Fiddle::TYPE_INT, Fiddle::TYPE_CHAR], ["i", "c"]]

parse_signature('double sum(double, double)')
  #=> ["sum", Fiddle::TYPE_DOUBLE, [Fiddle::TYPE_DOUBLE, Fiddle::TYPE_DOUBLE]]
No documentation available
No documentation available
No documentation available

Mixin for holding meta-information.

No documentation available
No documentation available

A template for stream parser listeners. Note that the declarations (attlistdecl, elementdecl, etc) are trivially processed; REXML doesn’t yet handle doctype entity declarations, so you have to parse them out yourself.

No documentation available

Atom is an XML-based document format that is used to describe ‘feeds’ of related information. A typical use is in a news feed where the information is periodically updated and which users can subscribe to. The Atom format is described in tools.ietf.org/html/rfc4287

The Atom module provides support in reading and creating feeds.

See the RSS module for examples consuming and creating feeds.

No documentation available
No documentation available

Provides a single method deprecate to be used to declare when something is going away.

class Legacy
  def self.klass_method
    # ...
  end

  def instance_method
    # ...
  end

  extend Gem::Deprecate
  deprecate :instance_method, "X.z", 2011, 4

  class << self
    extend Gem::Deprecate
    deprecate :klass_method, :none, 2011, 4
  end
end

Mixin methods for install and update options for Gem::Commands

This module is used for safely loading YAML specs from a gem. The ‘safe_load` method defined on this module is specifically designed for loading Gem specifications. For loading other YAML safely, please see Psych.safe_load

Format raw random number as Random does

This module is used to manager HTTP status codes.

See www.w3.org/Protocols/rfc2616/rfc2616-sec10.html for more information.

Class that parses String’s into URI’s.

It contains a Hash set of patterns and Regexp’s that match and validate.

Domain Name resource abstract class.

The canonical name for an alias.

The name of the person or entity.

Reference: validator.w3.org/feed/docs/rfc4287.html#element.name

No documentation available

This is the JSON parser implemented as a C extension. It can be configured to be used by setting

JSON.parser = JSON::Ext::Parser

with the method parser= in JSON.

No documentation available

Implementation of an X.509 certificate as specified in RFC 5280. Provides access to a certificate’s attributes and allows certificates to be read from a string, but also supports the creation of new certificates from scratch.

Reading a certificate from a file

Certificate is capable of handling DER-encoded certificates and certificates encoded in OpenSSL’s PEM format.

raw = File.read "cert.cer" # DER- or PEM-encoded
certificate = OpenSSL::X509::Certificate.new raw

Saving a certificate to a file

A certificate may be encoded in DER format

cert = ...
File.open("cert.cer", "wb") { |f| f.print cert.to_der }

or in PEM format

cert = ...
File.open("cert.pem", "wb") { |f| f.print cert.to_pem }

X.509 certificates are associated with a private/public key pair, typically a RSA, DSA or ECC key (see also OpenSSL::PKey::RSA, OpenSSL::PKey::DSA and OpenSSL::PKey::EC), the public key itself is stored within the certificate and can be accessed in form of an OpenSSL::PKey. Certificates are typically used to be able to associate some form of identity with a key pair, for example web servers serving pages over HTTPs use certificates to authenticate themselves to the user.

The public key infrastructure (PKI) model relies on trusted certificate authorities (“root CAs”) that issue these certificates, so that end users need to base their trust just on a selected few authorities that themselves again vouch for subordinate CAs issuing their certificates to end users.

The OpenSSL::X509 module provides the tools to set up an independent PKI, similar to scenarios where the ‘openssl’ command line tool is used for issuing certificates in a private PKI.

Creating a root CA certificate and an end-entity certificate

First, we need to create a “self-signed” root certificate. To do so, we need to generate a key first. Please note that the choice of “1” as a serial number is considered a security flaw for real certificates. Secure choices are integers in the two-digit byte range and ideally not sequential but secure random numbers, steps omitted here to keep the example concise.

root_key = OpenSSL::PKey::RSA.new 2048 # the CA's public/private key
root_ca = OpenSSL::X509::Certificate.new
root_ca.version = 2 # cf. RFC 5280 - to make it a "v3" certificate
root_ca.serial = 1
root_ca.subject = OpenSSL::X509::Name.parse "/DC=org/DC=ruby-lang/CN=Ruby CA"
root_ca.issuer = root_ca.subject # root CA's are "self-signed"
root_ca.public_key = root_key.public_key
root_ca.not_before = Time.now
root_ca.not_after = root_ca.not_before + 2 * 365 * 24 * 60 * 60 # 2 years validity
ef = OpenSSL::X509::ExtensionFactory.new
ef.subject_certificate = root_ca
ef.issuer_certificate = root_ca
root_ca.add_extension(ef.create_extension("basicConstraints","CA:TRUE",true))
root_ca.add_extension(ef.create_extension("keyUsage","keyCertSign, cRLSign", true))
root_ca.add_extension(ef.create_extension("subjectKeyIdentifier","hash",false))
root_ca.add_extension(ef.create_extension("authorityKeyIdentifier","keyid:always",false))
root_ca.sign(root_key, OpenSSL::Digest::SHA256.new)

The next step is to create the end-entity certificate using the root CA certificate.

key = OpenSSL::PKey::RSA.new 2048
cert = OpenSSL::X509::Certificate.new
cert.version = 2
cert.serial = 2
cert.subject = OpenSSL::X509::Name.parse "/DC=org/DC=ruby-lang/CN=Ruby certificate"
cert.issuer = root_ca.subject # root CA is the issuer
cert.public_key = key.public_key
cert.not_before = Time.now
cert.not_after = cert.not_before + 1 * 365 * 24 * 60 * 60 # 1 years validity
ef = OpenSSL::X509::ExtensionFactory.new
ef.subject_certificate = cert
ef.issuer_certificate = root_ca
cert.add_extension(ef.create_extension("keyUsage","digitalSignature", true))
cert.add_extension(ef.create_extension("subjectKeyIdentifier","hash",false))
cert.sign(root_key, OpenSSL::Digest::SHA256.new)
Search took: 7ms  ·  Total Results: 2732