@return [String] the name of the source of explicit dependencies, i.e.
those passed to {Resolver#resolve} directly.
@return [String] the name of the source of ‘locked’ dependencies, i.e.
those passed to {Resolver#resolve} directly as the `base`
Load extra data embed into binary format String object.
Returns an array containing the elements in self
corresponding to the given selector
(s).
The selectors may be either integer indices or ranges.
See also Array#select
.
a = %w{ a b c d e f } a.values_at(1, 3, 5) # => ["b", "d", "f"] a.values_at(1, 3, 5, 7) # => ["b", "d", "f", nil] a.values_at(-1, -2, -2, -7) # => ["f", "e", "e", nil] a.values_at(4..6, 3...6) # => ["e", "f", nil, "d", "e", "f"]
Deletes the element at the specified index
, returning that element, or nil
if the index
is out of range.
See also Array#slice!
a = ["ant", "bat", "cat", "dog"] a.delete_at(2) #=> "cat" a #=> ["ant", "bat", "dog"] a.delete_at(99) #=> nil
Returns the factorization of self
.
See Prime#prime_division
for more details.
Iterates the given block over all prime numbers.
See Prime
#each for more details.
Returns the number of bits of the value of int.
“the number of bits” means that the bit position of the highest bit which is different to the sign bit. (The bit position of the bit 2**n is n+1.) If there is no such bit (zero or minus one), zero is returned.
I.e. This method returns ceil(log2(int < 0 ? -int : int+1)).
(-2**10000-1).bit_length #=> 10001 (-2**10000).bit_length #=> 10000 (-2**10000+1).bit_length #=> 10000 (-2**1000-1).bit_length #=> 1001 (-2**1000).bit_length #=> 1000 (-2**1000+1).bit_length #=> 1000 (-2**12-1).bit_length #=> 13 (-2**12).bit_length #=> 12 (-2**12+1).bit_length #=> 12 -0x101.bit_length #=> 9 -0x100.bit_length #=> 8 -0xff.bit_length #=> 8 -2.bit_length #=> 1 -1.bit_length #=> 0 0.bit_length #=> 0 1.bit_length #=> 1 0xff.bit_length #=> 8 0x100.bit_length #=> 9 (2**12-1).bit_length #=> 12 (2**12).bit_length #=> 13 (2**12+1).bit_length #=> 13 (2**1000-1).bit_length #=> 1000 (2**1000).bit_length #=> 1001 (2**1000+1).bit_length #=> 1001 (2**10000-1).bit_length #=> 10000 (2**10000).bit_length #=> 10001 (2**10000+1).bit_length #=> 10001
This method can be used to detect overflow in Array#pack
as follows.
if n.bit_length < 32 [n].pack("l") # no overflow else raise "overflow" end