Returns the source encoding as an Encoding
object.
possible opt elements:
hash form: :partial_input => true # source buffer may be part of larger source :after_output => true # stop conversion after output before input integer form: Encoding::Converter::PARTIAL_INPUT Encoding::Converter::AFTER_OUTPUT
possible results:
:invalid_byte_sequence :incomplete_input :undefined_conversion :after_output :destination_buffer_full :source_buffer_empty :finished
primitive_convert
converts source_buffer into destination_buffer.
source_buffer should be a string or nil. nil means an empty string.
destination_buffer should be a string.
destination_byteoffset should be an integer or nil. nil means the end of destination_buffer. If it is omitted, nil is assumed.
destination_bytesize should be an integer or nil. nil means unlimited. If it is omitted, nil is assumed.
opt should be nil, a hash or an integer. nil means no flags. If it is omitted, nil is assumed.
primitive_convert
converts the content of source_buffer from beginning and store the result into destination_buffer.
destination_byteoffset and destination_bytesize specify the region which the converted result is stored. destination_byteoffset specifies the start position in destination_buffer in bytes. If destination_byteoffset is nil, destination_buffer.bytesize is used for appending the result. destination_bytesize specifies maximum number of bytes. If destination_bytesize is nil, destination size is unlimited. After conversion, destination_buffer is resized to destination_byteoffset + actually produced number of bytes. Also destination_buffer’s encoding is set to destination_encoding.
primitive_convert
drops the converted part of source_buffer. the dropped part is converted in destination_buffer or buffered in Encoding::Converter
object.
primitive_convert
stops conversion when one of following condition met.
invalid byte sequence found in source buffer (:invalid_byte_sequence) primitive_errinfo
and last_error
methods returns the detail of the error.
unexpected end of source buffer (:incomplete_input) this occur only when :partial_input is not specified. primitive_errinfo
and last_error
methods returns the detail of the error.
character not representable in output encoding (:undefined_conversion) primitive_errinfo
and last_error
methods returns the detail of the error.
after some output is generated, before input is done (:after_output) this occur only when :after_output is specified.
destination buffer is full (:destination_buffer_full) this occur only when destination_bytesize is non-nil.
source buffer is empty (:source_buffer_empty) this occur only when :partial_input is specified.
conversion is finished (:finished)
example:
ec = Encoding::Converter.new("UTF-8", "UTF-16BE") ret = ec.primitive_convert(src="pi", dst="", nil, 100) p [ret, src, dst] #=> [:finished, "", "\x00p\x00i"] ec = Encoding::Converter.new("UTF-8", "UTF-16BE") ret = ec.primitive_convert(src="pi", dst="", nil, 1) p [ret, src, dst] #=> [:destination_buffer_full, "i", "\x00"] ret = ec.primitive_convert(src, dst="", nil, 1) p [ret, src, dst] #=> [:destination_buffer_full, "", "p"] ret = ec.primitive_convert(src, dst="", nil, 1) p [ret, src, dst] #=> [:destination_buffer_full, "", "\x00"] ret = ec.primitive_convert(src, dst="", nil, 1) p [ret, src, dst] #=> [:finished, "", "i"]
Parses a C prototype signature
If Hash
tymap
is provided, the return value and the arguments from the signature
are expected to be keys, and the value will be the C type to be looked up.
Example:
include Fiddle::CParser #=> Object parse_signature('double sum(double, double)') #=> ["sum", Fiddle::TYPE_DOUBLE, [Fiddle::TYPE_DOUBLE, Fiddle::TYPE_DOUBLE]] parse_signature('void update(void (*cb)(int code))') #=> ["update", Fiddle::TYPE_VOID, [Fiddle::TYPE_VOIDP]] parse_signature('char (*getbuffer(void))[80]') #=> ["getbuffer", Fiddle::TYPE_VOIDP, []]
Writes s
to the buffer. When the buffer is full or sync
is true the buffer is flushed to the underlying socket.
Writes str
in the non-blocking manner.
If there is buffered data, it is flushed first. This may block.
write_nonblock
returns number of bytes written to the SSL
connection.
When no data can be written without blocking it raises OpenSSL::SSL::SSLError
extended by IO::WaitReadable
or IO::WaitWritable
.
IO::WaitReadable
means SSL
needs to read internally so write_nonblock
should be called again after the underlying IO
is readable.
IO::WaitWritable
means SSL
needs to write internally so write_nonblock
should be called again after underlying IO
is writable.
So OpenSSL::Buffering#write_nonblock
needs two rescue clause as follows.
# emulates blocking write. begin result = ssl.write_nonblock(str) rescue IO::WaitReadable IO.select([io]) retry rescue IO::WaitWritable IO.select(nil, [io]) retry end
Note that one reason that write_nonblock
reads from the underlying IO
is when the peer requests a new TLS/SSL handshake. See the openssl FAQ for more details. www.openssl.org/support/faq.html
A utility method for encoding the String s as a URL.
require "erb" include ERB::Util puts url_encode("Programming Ruby: The Pragmatic Programmer's Guide")
Generates
Programming%20Ruby%3A%20%20The%20Pragmatic%20Programmer%27s%20Guide
A utility method for encoding the String s as a URL.
require "erb" include ERB::Util puts url_encode("Programming Ruby: The Pragmatic Programmer's Guide")
Generates
Programming%20Ruby%3A%20%20The%20Pragmatic%20Programmer%27s%20Guide
A node-set is converted to a string by returning the concatenation of the string-value of each of the children of the node in the node-set that is first in document order. If the node-set is empty, an empty string is returned.
Kouhei fixed this
Kouhei fixed this too
UNTESTED
Visit all subnodes of self
recursively