Check if --yjit-stats
is used.
Return a hash for statistics generated for the --yjit-stats
command line option. Return nil
when option is not passed or unavailable. If a symbol argument is provided, return only the value for the named stat. If any other type is provided, raises TypeError
.
Discard existing compiled code to reclaim memory and allow for recompilations in the future.
Assert that any future ZJIT
compilation will return a function pointer
When the content of a string node is split across multiple lines, the parser gem creates individual string nodes for each line the content is part of.
Defines a public singleton method in the receiver. The method parameter can be a Proc
, a Method
or an UnboundMethod
object. If a block is specified, it is used as the method body. If a block or a method has parameters, they’re used as method parameters.
class A class << self def class_name to_s end end end A.define_singleton_method(:who_am_i) do "I am: #{class_name}" end A.who_am_i # ==> "I am: A" guy = "Bob" guy.define_singleton_method(:hello) { "#{self}: Hello there!" } guy.hello #=> "Bob: Hello there!" chris = "Chris" chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" } chris.greet("Hi") #=> "Hi, I'm Chris!"
Yields while console input events are queued.
This method is Windows only.
You must require ‘io/console’ to use this method.
Returns true
if the stream will be closed on exec, false
otherwise:
f = File.open('t.txt') f.close_on_exec? # => true f.close_on_exec = false f.close_on_exec? # => false f.close
Sets a close-on-exec flag.
f = File.open(File::NULL) f.close_on_exec = true system("cat", "/proc/self/fd/#{f.fileno}") # cat: /proc/self/fd/3: No such file or directory f.closed? #=> false
Ruby
sets close-on-exec flags of all file descriptors by default since Ruby
2.0.0. So you don’t need to set by yourself. Also, unsetting a close-on-exec flag can cause file descriptor leak if another thread use fork() and exec() (via system() method for example). If you really needs file descriptor inheritance to child process, use spawn()‘s argument such as fd=>fd.
Returns whether Happy Eyeballs Version 2 (RFC 8305), which is provided starting from Ruby
3.4 when using TCPSocket.new
and Socket.tcp
, is enabled or disabled.
If true, it is enabled for TCPSocket.new
and Socket.tcp
. (Note: Happy Eyeballs Version 2 is not provided when using TCPSocket.new
on Windows.)
If false, Happy Eyeballs Version 2 is disabled.
For details on Happy Eyeballs Version 2, see Socket.tcp_fast_fallback=
.
Enable or disable Happy Eyeballs Version 2 (RFC 8305) globally, which is provided starting from Ruby
3.4 when using TCPSocket.new
and Socket.tcp
.
When set to true, the feature is enabled for both ‘TCPSocket.new` and `Socket.tcp`. (Note: This feature is not available when using TCPSocket.new
on Windows.)
When set to false, the behavior reverts to that of Ruby
3.3 or earlier.
The default value is true if no value is explicitly set by calling this method. However, when the environment variable RUBY_TCP_NO_FAST_FALLBACK=1 is set, the default is false.
To control the setting on a per-method basis, use the fast_fallback keyword argument for each method.
Happy Eyeballs Version 2 (RFC 8305) is an algorithm designed to improve client socket connectivity.
It aims for more reliable and efficient connections by performing hostname resolution and connection attempts in parallel, instead of serially.
Starting from Ruby
3.4, this method operates as follows with this algorithm:
Start resolving both IPv6 and IPv4 addresses concurrently.
Start connecting to the one of the addresses that are obtained first.
If IPv4 addresses are obtained first, the method waits 50 ms for IPv6 name resolution to prioritize IPv6 connections.
After starting a connection attempt, wait 250 ms for the connection to be established.
If no connection is established within this time, a new connection is started every 250 ms
until a connection is established or there are no more candidate addresses.
(Although RFC 8305 strictly specifies sorting addresses,
this method only alternates between IPv6 / IPv4 addresses due to the performance concerns)
Once a connection is established, all remaining connection attempts are canceled.
Invoked as a callback whenever a singleton method is added to the receiver.
module Chatty def Chatty.singleton_method_added(id) puts "Adding #{id.id2name}" end def self.one() end def two() end def Chatty.three() end end
produces:
Adding singleton_method_added Adding one Adding three
Invoked as a callback whenever a singleton method is undefined in the receiver.
module Chatty def Chatty.singleton_method_undefined(id) puts "Undefining #{id.id2name}" end def Chatty.one() end class << self undef_method(:one) end end
produces:
Undefining one
Yields each frame of the current execution stack as a backtrace location object.
Returns the class for the given object
.
class A def foo ObjectSpace::trace_object_allocations do obj = Object.new p "#{ObjectSpace::allocation_class_path(obj)}" end end end A.new.foo #=> "Class"
See ::trace_object_allocations
for more information and examples.
Returns the method identifier for the given object
.
class A include ObjectSpace def foo trace_object_allocations do obj = Object.new p "#{allocation_class_path(obj)}##{allocation_method_id(obj)}" end end end A.new.foo #=> "Class#new"
See ::trace_object_allocations
for more information and examples.