Results for: "pstore"

A StoreContext is used while validating a single certificate and holds the status involved.

The X509 certificate store holds trusted CA certificates used to verify peer certificates.

The easiest way to create a useful certificate store is:

cert_store = OpenSSL::X509::Store.new
cert_store.set_default_paths

This will use your system’s built-in certificates.

If your system does not have a default set of certificates you can obtain a set extracted from Mozilla CA certificate store by cURL maintainers here: curl.haxx.se/docs/caextract.html (You may wish to use the firefox-db2pem.sh script to extract the certificates from a local install to avoid man-in-the-middle attacks.)

After downloading or generating a cacert.pem from the above link you can create a certificate store from the pem file like this:

cert_store = OpenSSL::X509::Store.new
cert_store.add_file 'cacert.pem'

The certificate store can be used with an SSLSocket like this:

ssl_context = OpenSSL::SSL::SSLContext.new
ssl_context.verify_mode = OpenSSL::SSL::VERIFY_PEER
ssl_context.cert_store = cert_store

tcp_socket = TCPSocket.open 'example.com', 443

ssl_socket = OpenSSL::SSL::SSLSocket.new tcp_socket, ssl_context

Tokens where state should be ignored used for :on_comment, :on_heredoc_end, :on_embexpr_end

No documentation available
No documentation available

Ignored newlines can occasionally have a LABEL state attached to them, so we compare the state differently here.

A repository is a configured collection of fields and a set of entries that knows how to reparse a source and reify the values.

Raised when a bad requirement is encountered

The RequirementList is used to hold the requirements being considered while resolving a set of gems.

The RequirementList acts like a queue where the oldest items are removed first.

An absolutely silent progress reporter.

A basic dotted progress reporter.

A progress reporter that prints out messages about the current progress.

A progress reporter that behaves nicely with threaded downloading.

Shows surrounding kw/end pairs

The purpose of showing these extra pairs is due to cases of ambiguity when only one visible line is matched.

For example:

1  class Dog
2    def bark
4    def eat
5    end
6  end

In this case either line 2 could be missing an ‘end` or line 4 was an extra line added by mistake (it happens).

When we detect the above problem it shows the issue as only being on line 2

2    def bark

Showing “neighbor” keyword pairs gives extra context:

2    def bark
4    def eat
5    end

Example:

lines = BeforeAfterKeywordEnds.new(
  block: block,
  code_lines: code_lines
).call()

Raised by Encoding and String methods when the source encoding is incompatible with the target encoding.

Exception for invalid date/time

The base exception for JSON errors.

OpenSSL::Digest allows you to compute message digests (sometimes interchangeably called “hashes”) of arbitrary data that are cryptographically secure, i.e. a Digest implements a secure one-way function.

One-way functions offer some useful properties. E.g. given two distinct inputs the probability that both yield the same output is highly unlikely. Combined with the fact that every message digest algorithm has a fixed-length output of just a few bytes, digests are often used to create unique identifiers for arbitrary data. A common example is the creation of a unique id for binary documents that are stored in a database.

Another useful characteristic of one-way functions (and thus the name) is that given a digest there is no indication about the original data that produced it, i.e. the only way to identify the original input is to “brute-force” through every possible combination of inputs.

These characteristics make one-way functions also ideal companions for public key signature algorithms: instead of signing an entire document, first a hash of the document is produced with a considerably faster message digest algorithm and only the few bytes of its output need to be signed using the slower public key algorithm. To validate the integrity of a signed document, it suffices to re-compute the hash and verify that it is equal to that in the signature.

You can get a list of all digest algorithms supported on your system by running this command in your terminal:

openssl list -digest-algorithms

Among the OpenSSL 1.1.1 supported message digest algorithms are:

Each of these algorithms can be instantiated using the name:

digest = OpenSSL::Digest.new('SHA256')

“Breaking” a message digest algorithm means defying its one-way function characteristics, i.e. producing a collision or finding a way to get to the original data by means that are more efficient than brute-forcing etc. Most of the supported digest algorithms can be considered broken in this sense, even the very popular MD5 and SHA1 algorithms. Should security be your highest concern, then you should probably rely on SHA224, SHA256, SHA384 or SHA512.

Hashing a file

data = File.binread('document')
sha256 = OpenSSL::Digest.new('SHA256')
digest = sha256.digest(data)

Hashing several pieces of data at once

data1 = File.binread('file1')
data2 = File.binread('file2')
data3 = File.binread('file3')
sha256 = OpenSSL::Digest.new('SHA256')
sha256 << data1
sha256 << data2
sha256 << data3
digest = sha256.digest

Reuse a Digest instance

data1 = File.binread('file1')
sha256 = OpenSSL::Digest.new('SHA256')
digest1 = sha256.digest(data1)

data2 = File.binread('file2')
sha256.reset
digest2 = sha256.digest(data2)

Generic error, common for all classes under OpenSSL module

Generic Error for all of OpenSSL::BN (big num)

General error for openssl library configuration files. Including formatting, parsing errors, etc.

Document-class: OpenSSL::HMAC

OpenSSL::HMAC allows computing Hash-based Message Authentication Code (HMAC). It is a type of message authentication code (MAC) involving a hash function in combination with a key. HMAC can be used to verify the integrity of a message as well as the authenticity.

OpenSSL::HMAC has a similar interface to OpenSSL::Digest.

HMAC-SHA256 using one-shot interface

key = "key"
data = "message-to-be-authenticated"
mac = OpenSSL::HMAC.hexdigest("SHA256", key, data)
#=> "cddb0db23f469c8bf072b21fd837149bd6ace9ab771cceef14c9e517cc93282e"

HMAC-SHA256 using incremental interface

data1 = File.binread("file1")
data2 = File.binread("file2")
key = "key"
hmac = OpenSSL::HMAC.new(key, 'SHA256')
hmac << data1
hmac << data2
mac = hmac.digest

Subclasses ‘BadAlias` for backwards compatibility

No documentation available

This class works in conjunction with Psych::Parser to build an in-memory parse tree that represents a YAML document.

Example

parser = Psych::Parser.new Psych::TreeBuilder.new
parser.parse('--- foo')
tree = parser.handler.root

See Psych::Handler for documentation on the event methods used in this class.

Search took: 5ms  ·  Total Results: 2883