Returns a list of paths matching glob
that can be used by a gem to pick up features from other gems. For example:
Gem.find_files('rdoc/discover').each do |path| load path end
if check_load_path
is true (the default), then find_files
also searches $LOAD_PATH for files as well as gems.
Note that find_files
will return all files even if they are from different versions of the same gem. See also find_latest_files
Adds a post-build hook that will be passed an Gem::Installer
instance when Gem::Installer#install
is called. The hook is called after the gem has been extracted and extensions have been built but before the executables or gemspec has been written. If the hook returns false
then the gem’s files will be removed and the install will be aborted.
Adds a hook that will get run after Gem::Specification.reset
is run.
Safely read a file in binary mode on all platforms.
Is this a windows platform?
Is this platform Solaris?
Find
rubygems plugin files in the standard location and load them
Finds the user’s home directory.
The path to standard location of the user’s state file.
The path to standard location of the user’s state directory.
The default directory for binaries
Recursively copies files from src
to dest
.
Arguments src
and dest
should be interpretable as paths.
If src
is the path to a file, copies src
to dest
:
FileUtils.touch('src0.txt') File.exist?('dest0.txt') # => false FileUtils.copy_entry('src0.txt', 'dest0.txt') File.file?('dest0.txt') # => true
If src
is a directory, recursively copies src
to dest
:
tree('src1') # => src1 # |-- dir0 # | |-- src0.txt # | `-- src1.txt # `-- dir1 # |-- src2.txt # `-- src3.txt FileUtils.copy_entry('src1', 'dest1') tree('dest1') # => dest1 # |-- dir0 # | |-- src0.txt # | `-- src1.txt # `-- dir1 # |-- src2.txt # `-- src3.txt
The recursive copying preserves file types for regular files, directories, and symbolic links; other file types (FIFO streams, device files, etc.) are not supported.
Keyword arguments:
dereference_root: true
- if src
is a symbolic link, follows the link.
preserve: true
- preserves file times.
remove_destination: true
- removes dest
before copying files.
Related: methods for copying.
Recursively copies files from src
to dest
.
Arguments src
and dest
should be interpretable as paths.
If src
is the path to a file, copies src
to dest
:
FileUtils.touch('src0.txt') File.exist?('dest0.txt') # => false FileUtils.copy_entry('src0.txt', 'dest0.txt') File.file?('dest0.txt') # => true
If src
is a directory, recursively copies src
to dest
:
tree('src1') # => src1 # |-- dir0 # | |-- src0.txt # | `-- src1.txt # `-- dir1 # |-- src2.txt # `-- src3.txt FileUtils.copy_entry('src1', 'dest1') tree('dest1') # => dest1 # |-- dir0 # | |-- src0.txt # | `-- src1.txt # `-- dir1 # |-- src2.txt # `-- src3.txt
The recursive copying preserves file types for regular files, directories, and symbolic links; other file types (FIFO streams, device files, etc.) are not supported.
Keyword arguments:
dereference_root: true
- if src
is a symbolic link, follows the link.
preserve: true
- preserves file times.
remove_destination: true
- removes dest
before copying files.
Related: methods for copying.
Removes the entry given by path
, which should be the entry for a regular file, a symbolic link, or a directory.
Argument path
should be interpretable as a path.
Optional argument force
specifies whether to ignore raised exceptions of StandardError
and its descendants.
Related: FileUtils.remove_entry_secure
.
Removes the entry given by path
, which should be the entry for a regular file, a symbolic link, or a directory.
Argument path
should be interpretable as a path.
Optional argument force
specifies whether to ignore raised exceptions of StandardError
and its descendants.
Related: FileUtils.remove_entry_secure
.
Returns the language-dependent source file name for configuration checks.
Returns whether or not the entry point func
can be found within the library lib
in one of the paths
specified, where paths
is an array of strings. If func
is nil
, then the main()
function is used as the entry point.
If lib
is found, then the path it was found on is added to the list of library paths searched and linked against.
Instructs mkmf to search for the given header
in any of the paths
provided, and returns whether or not it was found in those paths.
If the header is found then the path it was found on is added to the list of included directories that are sent to the compiler (via the -I
switch).
Returns the convertible integer type of the given type
. You may optionally specify additional headers
to search in for the type
. convertible means actually the same type, or typedef’d from the same type.
If the type
is an integer type and the convertible type is found, the following macros are passed as preprocessor constants to the compiler using the type
name, in uppercase.
TYPEOF_
, followed by the type
name, followed by =X
where “X” is the found convertible type name.
TYP2NUM
and NUM2TYP
, where TYP
is the type
name in uppercase with replacing an _t
suffix with “T”, followed by =X
where “X” is the macro name to convert type
to an Integer
object, and vice versa.
For example, if foobar_t
is defined as unsigned long, then convertible_int("foobar_t")
would return “unsigned long”, and define these macros:
#define TYPEOF_FOOBAR_T unsigned long #define FOOBART2NUM ULONG2NUM #define NUM2FOOBART NUM2ULONG
Registers the given klass
as the class to be instantiated when parsing a URI with the given scheme
:
URI.register_scheme('MS_SEARCH', URI::Generic) # => URI::Generic URI.scheme_list['MS_SEARCH'] # => URI::Generic
Note that after calling String#upcase
on scheme
, it must be a valid constant name.
Returns a hash of the defined schemes:
URI.scheme_list # => {"MAILTO"=>URI::MailTo, "LDAPS"=>URI::LDAPS, "WS"=>URI::WS, "HTTP"=>URI::HTTP, "HTTPS"=>URI::HTTPS, "LDAP"=>URI::LDAP, "FILE"=>URI::File, "FTP"=>URI::FTP}
Related: URI.register_scheme
.
Basically a wrapper for Process.spawn
that:
Creates a child process for each of the given cmds
by calling Process.spawn
.
Pipes the stdout
from each child to the stdin
of the next child, or, for the first child, from the caller’s stdin
, or, for the last child, to the caller’s stdout
.
The method does not wait for child processes to exit, so the caller must do so.
With no block given, returns a 3-element array containing:
The stdin
stream of the first child process.
The stdout
stream of the last child process.
An array of the wait threads for all of the child processes.
Example:
first_stdin, last_stdout, wait_threads = Open3.pipeline_rw('sort', 'cat -n') # => [#<IO:fd 20>, #<IO:fd 21>, [#<Process::Waiter:0x000055e8de29ab40 sleep>, #<Process::Waiter:0x000055e8de29a690 sleep>]] first_stdin.puts("foo\nbar\nbaz") first_stdin.close # Send EOF to sort. puts last_stdout.read wait_threads.each do |wait_thread| wait_thread.join end
Output:
1 bar 2 baz 3 foo
With a block given, calls the block with the stdin
stream of the first child, the stdout
stream of the last child, and an array of the wait processes:
Open3.pipeline_rw('sort', 'cat -n') do |first_stdin, last_stdout, wait_threads| first_stdin.puts "foo\nbar\nbaz" first_stdin.close # send EOF to sort. puts last_stdout.read wait_threads.each do |wait_thread| wait_thread.join end end
Output:
1 bar 2 baz 3 foo
Like Process.spawn
, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.
If the first argument is a hash, it becomes leading argument env
in each call to Process.spawn
; see Execution Environment.
If the last argument is a hash, it becomes trailing argument options
in each call to Process.spawn
; see Execution Options.
Each remaining argument in cmds
is one of:
A command_line
: a string that begins with a shell reserved word or special built-in, or contains one or more metacharacters.
An exe_path
: the string path to an executable to be called.
An array containing a command_line
or an exe_path
, along with zero or more string arguments for the command.
Basically a wrapper for Process.spawn
that:
Creates a child process for each of the given cmds
by calling Process.spawn
.
Pipes the stdout
from each child to the stdin
of the next child, or, for the first child, from the caller’s stdin
, or, for the last child, to the caller’s stdout
.
The method does not wait for child processes to exit, so the caller must do so.
With no block given, returns a 3-element array containing:
The stdin
stream of the first child process.
The stdout
stream of the last child process.
An array of the wait threads for all of the child processes.
Example:
first_stdin, last_stdout, wait_threads = Open3.pipeline_rw('sort', 'cat -n') # => [#<IO:fd 20>, #<IO:fd 21>, [#<Process::Waiter:0x000055e8de29ab40 sleep>, #<Process::Waiter:0x000055e8de29a690 sleep>]] first_stdin.puts("foo\nbar\nbaz") first_stdin.close # Send EOF to sort. puts last_stdout.read wait_threads.each do |wait_thread| wait_thread.join end
Output:
1 bar 2 baz 3 foo
With a block given, calls the block with the stdin
stream of the first child, the stdout
stream of the last child, and an array of the wait processes:
Open3.pipeline_rw('sort', 'cat -n') do |first_stdin, last_stdout, wait_threads| first_stdin.puts "foo\nbar\nbaz" first_stdin.close # send EOF to sort. puts last_stdout.read wait_threads.each do |wait_thread| wait_thread.join end end
Output:
1 bar 2 baz 3 foo
Like Process.spawn
, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.
If the first argument is a hash, it becomes leading argument env
in each call to Process.spawn
; see Execution Environment.
If the last argument is a hash, it becomes trailing argument options
in each call to Process.spawn
; see Execution Options.
Each remaining argument in cmds
is one of:
A command_line
: a string that begins with a shell reserved word or special built-in, or contains one or more metacharacters.
An exe_path
: the string path to an executable to be called.
An array containing a command_line
or an exe_path
, along with zero or more string arguments for the command.