Results for: "pstore"

returns the socket address as packed struct sockaddr string.

Addrinfo.tcp("localhost", 80).to_sockaddr
#=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"

Receives up to maxlen bytes from udpsocket using recvfrom(2) after O_NONBLOCK is set for the underlying file descriptor. flags is zero or more of the MSG_ options. The first element of the results, mesg, is the data received. The second element, sender_inet_addr, is an array to represent the sender address.

When recvfrom(2) returns 0, Socket#recv_nonblock returns nil. In most cases it means the connection was closed, but it may also mean an empty packet was received, as the underlying API makes it impossible to distinguish these two cases.

Parameters

Example

require 'socket'
s1 = UDPSocket.new
s1.bind("127.0.0.1", 0)
s2 = UDPSocket.new
s2.bind("127.0.0.1", 0)
s2.connect(*s1.addr.values_at(3,1))
s1.connect(*s2.addr.values_at(3,1))
s1.send "aaa", 0
begin # emulate blocking recvfrom
  p s2.recvfrom_nonblock(10)  #=> ["aaa", ["AF_INET", 33302, "localhost.localdomain", "127.0.0.1"]]
rescue IO::WaitReadable
  IO.select([s2])
  retry
end

Refer to Socket#recvfrom for the exceptions that may be thrown if the call to recvfrom_nonblock fails.

UDPSocket#recvfrom_nonblock may raise any error corresponding to recvfrom(2) failure, including Errno::EWOULDBLOCK.

If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying recvfrom_nonblock.

By specifying a keyword argument exception to false, you can indicate that recvfrom_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable instead.

See

Example

UNIXServer.open("/tmp/sock") {|serv|
  UNIXSocket.open("/tmp/sock") {|c|
    s = serv.accept

    c.send_io STDOUT
    stdout = s.recv_io

    p STDOUT.fileno #=> 1
    p stdout.fileno #=> 7

    stdout.puts "hello" # outputs "hello\n" to standard output.
  }
}

klass will determine the class of io returned (using the IO.for_fd singleton method or similar). If klass is nil, an integer file descriptor is returned.

mode is the same as the argument passed to IO.for_fd

Closes self for reading; closed-write setting remains unchanged.

Raises IOError if reading is attempted.

Related: StringIO#close, StringIO#close_write.

Returns true if self is closed for reading, false otherwise.

Returns the substring that precedes the matched substring from the most recent match attempt if it was successful, or nil otherwise; see [Basic Match Values]:

scanner = StringScanner.new('foobarbaz')
scanner.pre_match      # => nil

scanner.pos = 3
scanner.exist?(/baz/)  # => 6
scanner.pre_match      # => "foobar" # Substring of entire string, not just target string.

scanner.exist?(/nope/) # => nil
scanner.pre_match      # => nil

Returns the substring that follows the matched substring from the most recent match attempt if it was successful, or nil otherwise; see [Basic Match Values]:

scanner = StringScanner.new('foobarbaz')
scanner.post_match     # => nil

scanner.pos = 3
scanner.match?(/bar/)  # => 3
scanner.post_match     # => "baz"

scanner.match?(/nope/) # => nil
scanner.post_match     # => nil

Returns whether the [fixed-anchor property] is set.

Returns the array of captured match values at indexes (1..) if the most recent match attempt succeeded, or nil otherwise; see [Captured Match Values]:

scanner = StringScanner.new('Fri Dec 12 1975 14:39')
scanner.named_captures # => {}

pattern = /(?<wday>\w+) (?<month>\w+) (?<day>\d+) /
scanner.match?(pattern)
scanner.named_captures # => {"wday"=>"Fri", "month"=>"Dec", "day"=>"12"}

scanner.string = 'nope'
scanner.match?(pattern)
scanner.named_captures # => {"wday"=>nil, "month"=>nil, "day"=>nil}

scanner.match?(/nosuch/)
scanner.named_captures # => {}

Evaluates a string containing Ruby source code, or the given block, within the context of the receiver (obj). In order to set the context, the variable self is set to obj while the code is executing, giving the code access to obj’s instance variables and private methods.

When instance_eval is given a block, obj is also passed in as the block’s only argument.

When instance_eval is given a String, the optional second and third parameters supply a filename and starting line number that are used when reporting compilation errors.

class KlassWithSecret
  def initialize
    @secret = 99
  end
  private
  def the_secret
    "Ssssh! The secret is #{@secret}."
  end
end
k = KlassWithSecret.new
k.instance_eval { @secret }          #=> 99
k.instance_eval { the_secret }       #=> "Ssssh! The secret is 99."
k.instance_eval {|obj| obj == self } #=> true

Executes the given block within the context of the receiver (obj). In order to set the context, the variable self is set to obj while the code is executing, giving the code access to obj’s instance variables. Arguments are passed as block parameters.

class KlassWithSecret
  def initialize
    @secret = 99
  end
end
k = KlassWithSecret.new
k.instance_exec(5) {|x| @secret+x }   #=> 104

Returns self.

Related: see Methods for Converting.

Returns a Proc object that maps a key to its value:

h = {foo: 0, bar: 1, baz: 2}
proc = h.to_proc
proc.class # => Proc
proc.call(:foo) # => 0
proc.call(:bar) # => 1
proc.call(:nosuch) # => nil

Related: see Methods for Converting.

With an argument, a block, or both given, derives a new hash new_hash from self, the argument, and/or the block; all, some, or none of its keys may be different from those in self.

With a block given and no argument, new_hash has keys determined only by the block.

For each key/value pair old_key/value in self, calls the block with old_key; the block’s return value becomes new_key; sets new_hash[new_key] = value; a duplicate key overwrites:

h = {foo: 0, bar: 1, baz: 2}
h.transform_keys {|old_key| old_key.to_s }
# => {"foo" => 0, "bar" => 1, "baz" => 2}
h.transform_keys {|old_key| 'xxx' }
# => {"xxx" => 2}

With argument other_hash given and no block, new_hash may have new keys provided by other_hash and unchanged keys provided by self.

For each key/value pair old_key/old_value in self, looks for key old_key in other_hash:

Unused keys in other_hash are ignored:

h = {foo: 0, bar: 1, baz: 2}
h.transform_keys(bat: 3)
# => {foo: 0, bar: 1, baz: 2}

With both argument other_hash and a block given, new_hash has new keys specified by other_hash or by the block, and unchanged keys provided by self.

For each pair old_key and value in self:

With no argument and no block given, returns a new Enumerator.

Related: see Methods for Transforming Keys and Values.

With an argument, a block, or both given, derives keys from the argument, the block, and self; all, some, or none of the keys in self may be changed.

With a block given and no argument, derives keys only from the block; all, some, or none of the keys in self may be changed.

For each key/value pair old_key/value in self, calls the block with old_key; the block’s return value becomes new_key; removes the entry for old_key: self.delete(old_key); sets self[new_key] = value; a duplicate key overwrites:

h = {foo: 0, bar: 1, baz: 2}
h.transform_keys! {|old_key| old_key.to_s }
# => {"foo" => 0, "bar" => 1, "baz" => 2}
h = {foo: 0, bar: 1, baz: 2}
h.transform_keys! {|old_key| 'xxx' }
# => {"xxx" => 2}

With argument other_hash given and no block, derives keys for self from other_hash and self; all, some, or none of the keys in self may be changed.

For each key/value pair old_key/old_value in self, looks for key old_key in other_hash:

Unused keys in other_hash are ignored:

h = {foo: 0, bar: 1, baz: 2}
h.transform_keys!(bat: 3)
# => {foo: 0, bar: 1, baz: 2}

With both argument other_hash and a block given, derives keys from other_hash, the block, and self; all, some, or none of the keys in self may be changed.

For each pair old_key and value in self:

With no argument and no block given, returns a new Enumerator.

Related: see Methods for Transforming Keys and Values.

With a block given, returns a new hash new_hash; for each pair key/value in self, calls the block with value and captures its return as new_value; adds to new_hash the entry key/new_value:

h = {foo: 0, bar: 1, baz: 2}
h1 = h.transform_values {|value| value * 100}
h1 # => {foo: 0, bar: 100, baz: 200}

With no block given, returns a new Enumerator.

Related: see Methods for Transforming Keys and Values.

With a block given, changes the values of self as determined by the block; returns self.

For each entry key/old_value in self, calls the block with old_value, captures its return value as new_value, and sets self[key] = new_value:

h = {foo: 0, bar: 1, baz: 2}
h.transform_values! {|value| value * 100} # => {foo: 0, bar: 100, baz: 200}

With no block given, returns a new Enumerator.

Related: see Methods for Transforming Keys and Values.

Returns a Hash containing all name/value pairs from ENV:

ENV.replace('foo' => '0', 'bar' => '1')
ENV.to_hash # => {"bar"=>"1", "foo"=>"0"}

Returns an IO object representing the current file. This will be a File object unless the current file is a stream such as STDIN.

For example:

ARGF.to_io    #=> #<File:glark.txt>
ARGF.to_io    #=> #<IO:<STDIN>>

Reads at most maxlen bytes from the ARGF stream in non-blocking mode.

Returns a new binding each time near TOPLEVEL_BINDING for runs that do not specify a binding.

Creates a new ipaddr containing the given network byte ordered string form of an IP address.

Returns a json string containing the IP address representation.

Creates a Range object for the network address.

Returns the usable width for out. As the width of out:

  1. If out is assigned to a tty device, its width is used.

  2. Otherwise, or it could not get the value, the COLUMN environment variable is assumed to be set to the width.

  3. If COLUMN is not set to a non-zero number, 80 is assumed.

And finally, returns the above width value - 1.

Search took: 5ms  ·  Total Results: 2883