Results for: "OptionParser"

Sets the instance variable named by symbol to the given object. This may circumvent the encapsulation intended by the author of the class, so it should be used with care. The variable does not have to exist prior to this call. If the instance variable name is passed as a string, that string is converted to a symbol.

class Fred
  def initialize(p1, p2)
    @a, @b = p1, p2
  end
end
fred = Fred.new('cat', 99)
fred.instance_variable_set(:@a, 'dog')   #=> "dog"
fred.instance_variable_set(:@c, 'cat')   #=> "cat"
fred.inspect                             #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"

Sets the temporary name of the module. This name is reflected in introspection of the module and the values that are related to it, such as instances, constants, and methods.

The name should be nil or a non-empty string that is not a valid constant path (to avoid confusing between permanent and temporary names).

The method can be useful to distinguish dynamically generated classes and modules without assigning them to constants.

If the module is given a permanent name by assigning it to a constant, the temporary name is discarded. A temporary name can’t be assigned to modules that have a permanent name.

If the given name is nil, the module becomes anonymous again.

Example:

m = Module.new # => #<Module:0x0000000102c68f38>
m.name #=> nil

m.set_temporary_name("fake_name") # => fake_name
m.name #=> "fake_name"

m.set_temporary_name(nil) # => #<Module:0x0000000102c68f38>
m.name #=> nil

c = Class.new
c.set_temporary_name("MyClass(with description)")

c.new # => #<MyClass(with description):0x0....>

c::M = m
c::M.name #=> "MyClass(with description)::M"

# Assigning to a constant replaces the name with a permanent one
C = c

C.name #=> "C"
C::M.name #=> "C::M"
c.new # => #<C:0x0....>

Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.

class Fred
  @@foo = 99
  def foo
    @@foo
  end
end
Fred.class_variable_set(:@@foo, 101)     #=> 101
Fred.new.foo                             #=> 101

Returns true if the stream will be closed on exec, false otherwise:

f = File.open('t.txt')
f.close_on_exec? # => true
f.close_on_exec = false
f.close_on_exec? # => false
f.close

Sets a close-on-exec flag.

f = File.open(File::NULL)
f.close_on_exec = true
system("cat", "/proc/self/fd/#{f.fileno}") # cat: /proc/self/fd/3: No such file or directory
f.closed?                #=> false

Ruby sets close-on-exec flags of all file descriptors by default since Ruby 2.0.0. So you don’t need to set by yourself. Also, unsetting a close-on-exec flag can cause file descriptor leak if another thread use fork() and exec() (via system() method for example). If you really needs file descriptor inheritance to child process, use spawn()‘s argument such as fd=>fd.

for compatibility

No documentation available

Returns a relative path from the given base_directory to the receiver.

If self is absolute, then base_directory must be absolute too.

If self is relative, then base_directory must be relative too.

This method doesn’t access the filesystem. It assumes no symlinks.

ArgumentError is raised when it cannot find a relative path.

Note that this method does not handle situations where the case sensitivity of the filesystem in use differs from the operating system default.

Unpacks sockaddr into port and ip_address.

sockaddr should be a string or an addrinfo for AF_INET/AF_INET6.

sockaddr = Socket.sockaddr_in(80, "127.0.0.1")
p sockaddr #=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
p Socket.unpack_sockaddr_in(sockaddr) #=> [80, "127.0.0.1"]

Unpacks sockaddr into path.

sockaddr should be a string or an addrinfo for AF_UNIX.

sockaddr = Socket.sockaddr_un("/tmp/sock")
p Socket.unpack_sockaddr_un(sockaddr) #=> "/tmp/sock"
No documentation available
No documentation available
No documentation available

Handle BasicObject instances

Set local variable named symbol as obj.

def foo
  a = 1
  bind = binding
  bind.local_variable_set(:a, 2) # set existing local variable `a'
  bind.local_variable_set(:b, 3) # create new local variable `b'
                                 # `b' exists only in binding

  p bind.local_variable_get(:a)  #=> 2
  p bind.local_variable_get(:b)  #=> 3
  p a                            #=> 2
  p b                            #=> NameError
end

This method behaves similarly to the following code:

binding.eval("#{symbol} = #{obj}")

if obj can be dumped in Ruby code.

Sets a thread local with key to value. Note that these are local to threads, and not to fibers. Please see Thread#thread_variable_get and Thread#[] for more information.

Attempts to enter exclusive section. Returns false if lock fails.

For backward compatibility

Ensures that the MonitorMixin is owned by the current thread, otherwise raises an exception.

MRI specific feature

Return internal super class of cls (Class or Module).

obj can be an instance of InternalObjectWrapper.

Note that you should not use this method in your application.

The number of paths in the +$LOAD_PATH+ from activated gems. Used to prioritize -I and ENV['RUBYLIB'] entries during require.

No documentation available

Glob pattern for require-able plugin suffixes.

The default signing certificate chain path

A block’s parameters.

Search took: 8ms  ·  Total Results: 3731