Enable or disable Happy Eyeballs Version 2 (RFC 8305) globally, which is provided starting from Ruby
3.4 when using TCPSocket.new
and Socket.tcp
.
When set to true, the feature is enabled for both ‘TCPSocket.new` and `Socket.tcp`. (Note: This feature is not available when using TCPSocket.new
on Windows.)
When set to false, the behavior reverts to that of Ruby
3.3 or earlier.
The default value is true if no value is explicitly set by calling this method. However, when the environment variable RUBY_TCP_NO_FAST_FALLBACK=1 is set, the default is false.
To control the setting on a per-method basis, use the fast_fallback keyword argument for each method.
Happy Eyeballs Version 2 (RFC 8305) is an algorithm designed to improve client socket connectivity.
It aims for more reliable and efficient connections by performing hostname resolution and connection attempts in parallel, instead of serially.
Starting from Ruby
3.4, this method operates as follows with this algorithm:
Start resolving both IPv6 and IPv4 addresses concurrently.
Start connecting to the one of the addresses that are obtained first.
If IPv4 addresses are obtained first, the method waits 50 ms for IPv6 name resolution to prioritize IPv6 connections.
After starting a connection attempt, wait 250 ms for the connection to be established.
If no connection is established within this time, a new connection is started every 250 ms
until a connection is established or there are no more candidate addresses.
(Although RFC 8305 strictly specifies sorting addresses,
this method only alternates between IPv6 / IPv4 addresses due to the performance concerns)
Once a connection is established, all remaining connection attempts are canceled.
Return the native thread ID which is used by the Ruby
thread.
The ID depends on the OS. (not POSIX thread ID returned by pthread_self(3))
On Linux it is TID returned by gettid(2).
On macOS it is the system-wide unique integral ID of thread returned by pthread_threadid_np(3).
On FreeBSD it is the unique integral ID of the thread returned by pthread_getthreadid_np(3).
On Windows it is the thread identifier returned by GetThreadId().
On other platforms, it raises NotImplementedError
.
NOTE: If the thread is not associated yet or already deassociated with a native thread, it returns nil. If the Ruby
implementation uses M:N thread model, the ID may change depending on the timing.
Invoke self.each
with *args
. With a block given, the block receives each element and its index; returns self
:
h = {} (1..4).each_with_index {|element, i| h[element] = i } # => 1..4 h # => {1=>0, 2=>1, 3=>2, 4=>3} h = {} %w[a b c d].each_with_index {|element, i| h[element] = i } # => ["a", "b", "c", "d"] h # => {"a"=>0, "b"=>1, "c"=>2, "d"=>3} a = [] h = {foo: 0, bar: 1, baz: 2} h.each_with_index {|element, i| a.push([i, element]) } # => {:foo=>0, :bar=>1, :baz=>2} a # => [[0, [:foo, 0]], [1, [:bar, 1]], [2, [:baz, 2]]]
With no block given, returns an Enumerator
.
Calls the block once for each element, passing both the element and the given object:
(1..4).each_with_object([]) {|i, a| a.push(i**2) } # => [1, 4, 9, 16] {foo: 0, bar: 1, baz: 2}.each_with_object({}) {|(k, v), h| h[v] = k } # => {0=>:foo, 1=>:bar, 2=>:baz}
With no block given, returns an Enumerator
.
Ensures that the MonitorMixin
is owned by the current thread, otherwise raises an exception.
Starts tracing object allocations from the ObjectSpace
extension module.
For example:
require 'objspace' class C include ObjectSpace def foo trace_object_allocations do obj = Object.new p "#{allocation_sourcefile(obj)}:#{allocation_sourceline(obj)}" end end end C.new.foo #=> "objtrace.rb:8"
This example has included the ObjectSpace
module to make it easier to read, but you can also use the ::trace_object_allocations
notation (recommended).
Note that this feature introduces a huge performance decrease and huge memory consumption.
Returns the method identifier for the given object
.
class A include ObjectSpace def foo trace_object_allocations do obj = Object.new p "#{allocation_class_path(obj)}##{allocation_method_id(obj)}" end end end A.new.foo #=> "Class#new"
See ::trace_object_allocations
for more information and examples.
Counts objects for each T_DATA
type.
This method is only for MRI developers interested in performance and memory usage of Ruby
programs.
It returns a hash as:
{RubyVM::InstructionSequence=>504, :parser=>5, :barrier=>6, :mutex=>6, Proc=>60, RubyVM::Env=>57, Mutex=>1, Encoding=>99, ThreadGroup=>1, Binding=>1, Thread=>1, RubyVM=>1, :iseq=>1, Random=>1, ARGF.class=>1, Data=>1, :autoload=>3, Time=>2} # T_DATA objects existing at startup on r32276.
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation specific and may change in the future.
In this version, keys are Class
object or Symbol
object.
If object is kind of normal (accessible) object, the key is Class
object. If object is not a kind of normal (internal) object, the key is symbol name, registered by rb_data_type_struct.
This method is only expected to work with C Ruby
.
Return all reachable objects from ‘obj’.
This method returns all reachable objects from ‘obj’.
If ‘obj’ has two or more references to the same object ‘x’, then returned array only includes one ‘x’ object.
If ‘obj’ is a non-markable (non-heap management) object such as true, false, nil, symbols and Fixnums (and Flonum) then it simply returns nil.
If ‘obj’ has references to an internal object, then it returns instances of ObjectSpace::InternalObjectWrapper
class. This object contains a reference to an internal object and you can check the type of internal object with ‘type’ method.
If ‘obj’ is instance of ObjectSpace::InternalObjectWrapper
class, then this method returns all reachable object from an internal object, which is pointed by ‘obj’.
With this method, you can find memory leaks.
This method is only expected to work with C Ruby
.
Example:
ObjectSpace.reachable_objects_from(['a', 'b', 'c']) #=> [Array, 'a', 'b', 'c'] ObjectSpace.reachable_objects_from(['a', 'a', 'a']) #=> [Array, 'a', 'a', 'a'] # all 'a' strings have different object id ObjectSpace.reachable_objects_from([v = 'a', v, v]) #=> [Array, 'a'] ObjectSpace.reachable_objects_from(1) #=> nil # 1 is not markable (heap managed) object
Returns information about the most recent garbage collection.
If the argument hash
is given and is a Hash
object, it is overwritten and returned. This is intended to avoid the probe effect.
If the argument key
is given and is a Symbol
object, it returns the value associated with the key. This is equivalent to GC.latest_gc_info[key]
.
Returns a list of paths matching glob
from the latest gems that can be used by a gem to pick up features from other gems. For example:
Gem.find_latest_files('rdoc/discover').each do |path| load path end
if check_load_path
is true (the default), then find_latest_files
also searches $LOAD_PATH for files as well as gems.
Unlike find_files
, find_latest_files
will return only files from the latest version of a gem.
The file name and line number of the caller of the caller of this method.
depth
is how many layers up the call stack it should go.
e.g.,
def a; Gem.location_of_caller
; end a #=> [“x.rb”, 2] # (it’ll vary depending on file name and line number)
def b; c; end def c; Gem.location_of_caller(2)
; end b #=> [“x.rb”, 6] # (it’ll vary depending on file name and line number)
Returns the latest release-version specification for the gem name
.
Returns the latest release version of RubyGems.
Returns the version of the latest release-version of gem name
Glob pattern for require-able plugin suffixes.
Path to specification files of default gems.
The default signing key path
The default signing certificate chain path
Default options for gem commands for Ruby
packagers.
The options here should be structured as an array of string “gem” command names as keys and a string of the default options as values.
Example:
def self.operating_system_defaults
{ 'install' => '--no-rdoc --no-ri --env-shebang', 'update' => '--no-rdoc --no-ri --env-shebang' }
end
Shortcut for defining multiple delegator methods, but with no provision for using a different name. The following two code samples have the same effect:
def_delegators :@records, :size, :<<, :map def_delegator :@records, :size def_delegator :@records, :<< def_delegator :@records, :map