Results for: "fnmatch"

Returns a new ipaddr built by converting the native IPv4 address into an IPv4-mapped IPv6 address.

Returns a new ipaddr built by converting the native IPv4 address into an IPv4-compatible IPv6 address.

Returns the wildcard mask in string format e.g. 0.0.255.255

No documentation available

Returns match and captures at the given indexes, which may include any mixture of:

Examples:

m = /(.)(.)(\d+)(\d)/.match("THX1138: The Movie")
# => #<MatchData "HX1138" 1:"H" 2:"X" 3:"113" 4:"8">
m.values_at(0, 2, -2) # => ["HX1138", "X", "113"]
m.values_at(1..2, -1) # => ["H", "X", "8"]

m = /(?<a>\d+) *(?<op>[+\-*\/]) *(?<b>\d+)/.match("1 + 2")
# => #<MatchData "1 + 2" a:"1" op:"+" b:"2">
m.values_at(0, 1..2, :a, :b, :op)
# => ["1 + 2", "1", "+", "1", "2", "+"]

Iterates over all IP addresses for name.

Iterates over all hostnames for address.

Iterates over all IP addresses for name.

Iterates over all hostnames for address.

No documentation available

Returns the Ruby source filename and line number of the binding object.

Returns the Ruby source filename and line number containing this proc or nil if this proc was not defined in Ruby (i.e. native).

Returns the Ruby source filename and line number containing this method or nil if this method was not defined in Ruby (i.e. native).

Returns the Ruby source filename and line number containing this method or nil if this method was not defined in Ruby (i.e. native).

Make obj shareable between ractors.

obj and all the objects it refers to will be frozen, unless they are already shareable.

If copy keyword is true, it will copy objects before freezing them, and will not modify obj or its internal objects.

Note that the specification and implementation of this method are not mature and may be changed in the future.

obj = ['test']
Ractor.shareable?(obj)     #=> false
Ractor.make_shareable(obj) #=> ["test"]
Ractor.shareable?(obj)     #=> true
obj.frozen?                #=> true
obj[0].frozen?             #=> true

# Copy vs non-copy versions:
obj1 = ['test']
obj1s = Ractor.make_shareable(obj1)
obj1.frozen?                        #=> true
obj1s.object_id == obj1.object_id   #=> true
obj2 = ['test']
obj2s = Ractor.make_shareable(obj2, copy: true)
obj2.frozen?                        #=> false
obj2s.frozen?                       #=> true
obj2s.object_id == obj2.object_id   #=> false
obj2s[0].object_id == obj2[0].object_id #=> false

See also the “Shareable and unshareable objects” section in the Ractor class docs.

Returns the execution stack for the target thread—an array containing backtrace location objects.

See Thread::Backtrace::Location for more information.

This method behaves similarly to Kernel#caller_locations except it applies to a specific thread.

Converts block to a Proc object (and therefore binds it at the point of call) and registers it for execution when the program exits. If multiple handlers are registered, they are executed in reverse order of registration.

def do_at_exit(str1)
  at_exit { print str1 }
end
at_exit { puts "cruel world" }
do_at_exit("goodbye ")
exit

produces:

goodbye cruel world

Ruby tries to load the library named string relative to the directory containing the requiring file. If the file does not exist a LoadError is raised. Returns true if the file was loaded and false if the file was already loaded before.

Returns the current execution stack—an array containing backtrace location objects.

See Thread::Backtrace::Location for more information.

The optional start parameter determines the number of initial stack entries to omit from the top of the stack.

A second optional length parameter can be used to limit how many entries are returned from the stack.

Returns nil if start is greater than the size of current execution stack.

Optionally you can pass a range, which will return an array containing the entries within the specified range.

Returns an array containing truthy elements returned by the block.

With a block given, calls the block with successive elements; returns an array containing each truthy value returned by the block:

(0..9).filter_map {|i| i * 2 if i.even? }                              # => [0, 4, 8, 12, 16]
{foo: 0, bar: 1, baz: 2}.filter_map {|key, value| key if value.even? } # => [:foo, :baz]

When no block given, returns an Enumerator.

Returns an array of flattened objects returned by the block.

With a block given, calls the block with successive elements; returns a flattened array of objects returned by the block:

[0, 1, 2, 3].flat_map {|element| -element }                    # => [0, -1, -2, -3]
[0, 1, 2, 3].flat_map {|element| [element, -element] }         # => [0, 0, 1, -1, 2, -2, 3, -3]
[[0, 1], [2, 3]].flat_map {|e| e + [100] }                     # => [0, 1, 100, 2, 3, 100]
{foo: 0, bar: 1, baz: 2}.flat_map {|key, value| [key, value] } # => [:foo, 0, :bar, 1, :baz, 2]

With no block given, returns an Enumerator.

Alias: collect_concat.

Returns the elements for which the block returns the maximum values.

With a block given and no argument, returns the element for which the block returns the maximum value:

(1..4).max_by {|element| -element }                    # => 1
%w[a b c d].max_by {|element| -element.ord }           # => "a"
{foo: 0, bar: 1, baz: 2}.max_by {|key, value| -value } # => [:foo, 0]
[].max_by {|element| -element }                        # => nil

With a block given and positive integer argument n given, returns an array containing the n elements for which the block returns maximum values:

(1..4).max_by(2) {|element| -element }
# => [1, 2]
%w[a b c d].max_by(2) {|element| -element.ord }
# => ["a", "b"]
{foo: 0, bar: 1, baz: 2}.max_by(2) {|key, value| -value }
# => [[:foo, 0], [:bar, 1]]
[].max_by(2) {|element| -element }
# => []

Returns an Enumerator if no block is given.

Related: max, minmax, min_by.

With a block given, calls the block with each element, but in reverse order; returns self:

a = []
(1..4).reverse_each {|element| a.push(-element) } # => 1..4
a # => [-4, -3, -2, -1]

a = []
%w[a b c d].reverse_each {|element| a.push(element) }
# => ["a", "b", "c", "d"]
a # => ["d", "c", "b", "a"]

a = []
h.reverse_each {|element| a.push(element) }
# => {:foo=>0, :bar=>1, :baz=>2}
a # => [[:baz, 2], [:bar, 1], [:foo, 0]]

With no block given, returns an Enumerator.

Calls the given block with each element, converting multiple values from yield to an array; returns self:

a = []
(1..4).each_entry {|element| a.push(element) } # => 1..4
a # => [1, 2, 3, 4]

a = []
h = {foo: 0, bar: 1, baz:2}
h.each_entry {|element| a.push(element) }
# => {:foo=>0, :bar=>1, :baz=>2}
a # => [[:foo, 0], [:bar, 1], [:baz, 2]]

class Foo
  include Enumerable
  def each
    yield 1
    yield 1, 2
    yield
  end
end
Foo.new.each_entry {|yielded| p yielded }

Output:

1
[1, 2]
nil

With no block given, returns an Enumerator.

Calls the block with each successive disjoint n-tuple of elements; returns self:

a = []
(1..10).each_slice(3) {|tuple| a.push(tuple) }
a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]

a = []
h = {foo: 0, bar: 1, baz: 2, bat: 3, bam: 4}
h.each_slice(2) {|tuple| a.push(tuple) }
a # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]], [[:bam, 4]]]

With no block given, returns an Enumerator.

Search took: 5ms  ·  Total Results: 1776