Calls the given block with each character in the stream; returns self
. See Character IO.
f = File.new('t.rus') a = [] f.each_char {|c| a << c.ord } a # => [1090, 1077, 1089, 1090] f.close
Returns an Enumerator
if no block is given.
Related: IO#each_byte
, IO#each_codepoint
.
Returns true
if matching against re
can be done in linear time to the input string.
Regexp.linear_time?(/re/) # => true
Note that this is a property of the ruby interpreter, not of the argument regular expression. Identical regexp can or cannot run in linear time depending on your ruby binary. Neither forward nor backward compatibility is guaranteed about the return value of this method. Our current algorithm is (*1) but this is subject to change in the future. Alternative implementations can also behave differently. They might always return false for everything.
Equivalent to self.to_s.start_with?
; see String#start_with?
.
This method is called when the parser found syntax error.
Parses src
and create S-exp tree. This method is mainly for developer use. The filename
argument is mostly ignored. By default, this method does not handle syntax errors in src
, returning nil
in such cases. Use the raise_errors
keyword to raise a SyntaxError
for an error in src
.
require 'ripper' require 'pp' pp Ripper.sexp_raw("def m(a) nil end") #=> [:program, [:stmts_add, [:stmts_new], [:def, [:@ident, "m", [1, 4]], [:paren, [:params, [[:@ident, "a", [1, 6]]], nil, nil, nil]], [:bodystmt, [:stmts_add, [:stmts_new], [:var_ref, [:@kw, "nil", [1, 9]]]], nil, nil, nil]]]]
With a block given, calls the block with each remaining character in the stream; see Character IO.
With no block given, returns an enumerator.
Returns a new Hash
object; each entry has:
A key provided by the block.
The value from self
.
An optional hash argument can be provided to map keys to new keys. Any key not given will be mapped using the provided block, or remain the same if no block is given.
Transform keys:
h = {foo: 0, bar: 1, baz: 2} h1 = h.transform_keys {|key| key.to_s } h1 # => {"foo"=>0, "bar"=>1, "baz"=>2} h.transform_keys(foo: :bar, bar: :foo) #=> {bar: 0, foo: 1, baz: 2} h.transform_keys(foo: :hello, &:to_s) #=> {hello: 0, "bar" => 1, "baz" => 2}
Overwrites values for duplicate keys:
h = {foo: 0, bar: 1, baz: 2} h1 = h.transform_keys {|key| :bat } h1 # => {bat: 2}
Returns a new Enumerator
if no block given:
h = {foo: 0, bar: 1, baz: 2} e = h.transform_keys # => #<Enumerator: {foo: 0, bar: 1, baz: 2}:transform_keys> h1 = e.each { |key| key.to_s } h1 # => {"foo"=>0, "bar"=>1, "baz"=>2}
Same as Hash#transform_keys
but modifies the receiver in place instead of returning a new hash.
Returns a new Hash
object; each entry has:
A key from self
.
A value provided by the block.
Transform values:
h = {foo: 0, bar: 1, baz: 2} h1 = h.transform_values {|value| value * 100} h1 # => {foo: 0, bar: 100, baz: 200}
Returns a new Enumerator
if no block given:
h = {foo: 0, bar: 1, baz: 2} e = h.transform_values # => #<Enumerator: {foo: 0, bar: 1, baz: 2}:transform_values> h1 = e.each { |value| value * 100} h1 # => {foo: 0, bar: 100, baz: 200}
Returns self
, whose keys are unchanged, and whose values are determined by the given block.
h = {foo: 0, bar: 1, baz: 2} h.transform_values! {|value| value * 100} # => {foo: 0, bar: 100, baz: 200}
Returns a new Enumerator
if no block given:
h = {foo: 0, bar: 1, baz: 2} e = h.transform_values! # => #<Enumerator: {foo: 0, bar: 100, baz: 200}:transform_values!> h1 = e.each {|value| value * 100} h1 # => {foo: 0, bar: 100, baz: 200}
Iterates over each character of each file in ARGF
.
This method allows you to treat the files supplied on the command line as a single file consisting of the concatenation of each named file. After the last character of the first file has been returned, the first character of the second file is returned. The ARGF.filename
method can be used to determine the name of the file in which the current character appears.
If no block is given, an enumerator is returned instead.
Serialization support for the object returned by _getobj_.
Reinitializes delegation from a serialized object.
Can be used to set eoutvar as described in ERB::new
. It’s probably easier to just use the constructor though, since calling this method requires the setup of an ERB
compiler object.
Returns a string for DNS reverse lookup compatible with RFC3172.
Creates a Range
object for the network address.
Returns the wildcard mask in string format e.g. 0.0.255.255
Program name to be emitted in error message and default banner, defaults to $0.
Returns the sharing detection flag as a boolean value. It is false (nil) by default.
Sets the sharing detection flag to b.
Returns the group most recently added to the stack.
Contrived example:
out = "" => "" q = PrettyPrint.new(out) => #<PrettyPrint:0x82f85c0 @output="", @maxwidth=79, @newline="\n", @genspace=#<Proc:0x82f8368@/home/vbatts/.rvm/rubies/ruby-head/lib/ruby/2.0.0/prettyprint.rb:82 (lambda)>, @output_width=0, @buffer_width=0, @buffer=[], @group_stack=[#<PrettyPrint::Group:0x82f8138 @depth=0, @breakables=[], @break=false>], @group_queue=#<PrettyPrint::GroupQueue:0x82fb7c0 @queue=[[#<PrettyPrint::Group:0x82f8138 @depth=0, @breakables=[], @break=false>]]>, @indent=0> q.group { q.text q.current_group.inspect q.text q.newline q.group(q.current_group.depth + 1) { q.text q.current_group.inspect q.text q.newline q.group(q.current_group.depth + 1) { q.text q.current_group.inspect q.text q.newline q.group(q.current_group.depth + 1) { q.text q.current_group.inspect q.text q.newline } } } } => 284 puts out #<PrettyPrint::Group:0x8354758 @depth=1, @breakables=[], @break=false> #<PrettyPrint::Group:0x8354550 @depth=2, @breakables=[], @break=false> #<PrettyPrint::Group:0x83541cc @depth=3, @breakables=[], @break=false> #<PrettyPrint::Group:0x8347e54 @depth=4, @breakables=[], @break=false>
Returns the names of the binding’s local variables as symbols.
def foo a = 1 2.times do |n| binding.local_variables #=> [:a, :n] end end
This method is the short version of the following code:
binding.eval("local_variables")
Make obj
shareable between ractors.
obj
and all the objects it refers to will be frozen, unless they are already shareable.
If copy
keyword is true
, it will copy objects before freezing them, and will not modify obj
or its internal objects.
Note that the specification and implementation of this method are not mature and may be changed in the future.
obj = ['test'] Ractor.shareable?(obj) #=> false Ractor.make_shareable(obj) #=> ["test"] Ractor.shareable?(obj) #=> true obj.frozen? #=> true obj[0].frozen? #=> true # Copy vs non-copy versions: obj1 = ['test'] obj1s = Ractor.make_shareable(obj1) obj1.frozen? #=> true obj1s.object_id == obj1.object_id #=> true obj2 = ['test'] obj2s = Ractor.make_shareable(obj2, copy: true) obj2.frozen? #=> false obj2s.frozen? #=> true obj2s.object_id == obj2.object_id #=> false obj2s[0].object_id == obj2[0].object_id #=> false
See also the “Shareable and unshareable objects” section in the Ractor
class docs.
Changes asynchronous interrupt timing.
interrupt means asynchronous event and corresponding procedure by Thread#raise
, Thread#kill
, signal trap (not supported yet) and main thread termination (if main thread terminates, then all other thread will be killed).
The given hash
has pairs like ExceptionClass => :TimingSymbol
. Where the ExceptionClass is the interrupt handled by the given block. The TimingSymbol can be one of the following symbols:
:immediate
Invoke interrupts immediately.
:on_blocking
Invoke interrupts while BlockingOperation.
:never
Never invoke all interrupts.
BlockingOperation means that the operation will block the calling thread, such as read and write. On CRuby implementation, BlockingOperation is any operation executed without GVL.
Masked asynchronous interrupts are delayed until they are enabled. This method is similar to sigprocmask(3).
Asynchronous interrupts are difficult to use.
If you need to communicate between threads, please consider to use another way such as Queue
.
Or use them with deep understanding about this method.
In this example, we can guard from Thread#raise
exceptions.
Using the :never
TimingSymbol the RuntimeError
exception will always be ignored in the first block of the main thread. In the second ::handle_interrupt
block we can purposefully handle RuntimeError
exceptions.
th = Thread.new do Thread.handle_interrupt(RuntimeError => :never) { begin # You can write resource allocation code safely. Thread.handle_interrupt(RuntimeError => :immediate) { # ... } ensure # You can write resource deallocation code safely. end } end Thread.pass # ... th.raise "stop"
While we are ignoring the RuntimeError
exception, it’s safe to write our resource allocation code. Then, the ensure block is where we can safely deallocate your resources.
It’s possible to stack multiple levels of ::handle_interrupt
blocks in order to control more than one ExceptionClass and TimingSymbol at a time.
Thread.handle_interrupt(FooError => :never) { Thread.handle_interrupt(BarError => :never) { # FooError and BarError are prohibited. } }
All exceptions inherited from the ExceptionClass parameter will be considered.
Thread.handle_interrupt(Exception => :never) { # all exceptions inherited from Exception are prohibited. }
For handling all interrupts, use Object
and not Exception
as the ExceptionClass, as kill/terminate interrupts are not handled by Exception
.
Returns whether or not the asynchronous queue is empty.
Since Thread::handle_interrupt
can be used to defer asynchronous events, this method can be used to determine if there are any deferred events.
If you find this method returns true, then you may finish :never
blocks.
For example, the following method processes deferred asynchronous events immediately.
def Thread.kick_interrupt_immediately Thread.handle_interrupt(Object => :immediate) { Thread.pass } end
If error
is given, then check only for error
type deferred events.
th = Thread.new{ Thread.handle_interrupt(RuntimeError => :on_blocking){ while true ... # reach safe point to invoke interrupt if Thread.pending_interrupt? Thread.handle_interrupt(Object => :immediate){} end ... end } } ... th.raise # stop thread
This example can also be written as the following, which you should use to avoid asynchronous interrupts.
flag = true th = Thread.new{ Thread.handle_interrupt(RuntimeError => :on_blocking){ while true ... # reach safe point to invoke interrupt break if flag == false ... end } } ... flag = false # stop thread