Waits until IO
is priority and returns a truthy value or a falsy value when times out. Priority data is sent and received using the Socket::MSG_OOB flag and is typically limited to streams.
You must require ‘io/wait’ to use this method.
Copies from the given src
to the given dst
, returning the number of bytes copied.
The given src
must be one of the following:
The path to a readable file, from which source data is to be read.
An IO-like object, opened for reading and capable of responding to method :readpartial
or method :read
.
The given dst
must be one of the following:
The path to a writable file, to which data is to be written.
An IO-like object, opened for writing and capable of responding to method :write
.
The examples here use file t.txt
as source:
File.read('t.txt') # => "First line\nSecond line\n\nThird line\nFourth line\n" File.read('t.txt').size # => 47
If only arguments src
and dst
are given, the entire source stream is copied:
# Paths. IO.copy_stream('t.txt', 't.tmp') # => 47 # IOs (recall that a File is also an IO). src_io = File.open('t.txt', 'r') # => #<File:t.txt> dst_io = File.open('t.tmp', 'w') # => #<File:t.tmp> IO.copy_stream(src_io, dst_io) # => 47 src_io.close dst_io.close
With argument src_length
a non-negative integer, no more than that many bytes are copied:
IO.copy_stream('t.txt', 't.tmp', 10) # => 10 File.read('t.tmp') # => "First line"
With argument src_offset
also given, the source stream is read beginning at that offset:
IO.copy_stream('t.txt', 't.tmp', 11, 11) # => 11 IO.read('t.tmp') # => "Second line"
Returns the Encoding
object that represents the encoding of the stream, or nil
if the stream is in write mode and no encoding is specified.
See Encodings.
See Encodings.
Argument ext_enc
, if given, must be an Encoding
object or a String
with the encoding name; it is assigned as the encoding for the stream.
Argument int_enc
, if given, must be an Encoding
object or a String
with the encoding name; it is assigned as the encoding for the internal string.
Argument 'ext_enc:int_enc'
, if given, is a string containing two colon-separated encoding names; corresponding Encoding
objects are assigned as the external and internal encodings for the stream.
If the external encoding of a string is binary/ASCII-8BIT, the internal encoding of the string is set to nil, since no transcoding is needed.
Optional keyword arguments enc_opts
specify Encoding options.
Returns false
if self
is applicable to a string with any ASCII-compatible encoding; otherwise returns true
:
r = /a/ # => /a/ r.fixed_encoding? # => false r.match?("\u{6666} a") # => true r.match?("\xa1\xa2 a".force_encoding("euc-jp")) # => true r.match?("abc".force_encoding("euc-jp")) # => true r = /a/u # => /a/ r.fixed_encoding? # => true r.match?("\u{6666} a") # => true r.match?("\xa1\xa2".force_encoding("euc-jp")) # Raises exception. r.match?("abc".force_encoding("euc-jp")) # => true r = /\u{6666}/ # => /\u{6666}/ r.fixed_encoding? # => true r.encoding # => #<Encoding:UTF-8> r.match?("\u{6666} a") # => true r.match?("\xa1\xa2".force_encoding("euc-jp")) # Raises exception. r.match?("abc".force_encoding("euc-jp")) # => false
Returns a hash of the name/value pairs for the given member names.
Customer = Struct.new(:name, :address, :zip) joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) h = joe.deconstruct_keys([:zip, :address]) h # => {:zip=>12345, :address=>"123 Maple, Anytown NC"}
Returns all names and values if array_of_names
is nil
:
h = joe.deconstruct_keys(nil) h # => {:name=>"Joseph Smith, Jr.", :address=>"123 Maple, Anytown NC", :zip=>12345}
creates an Addrinfo
object from the arguments.
The arguments are interpreted as similar to self.
Addrinfo.tcp("0.0.0.0", 4649).family_addrinfo("www.ruby-lang.org", 80) #=> #<Addrinfo: 221.186.184.68:80 TCP (www.ruby-lang.org:80)> Addrinfo.unix("/tmp/sock").family_addrinfo("/tmp/sock2") #=> #<Addrinfo: /tmp/sock2 SOCK_STREAM>
Returns the Encoding
object that represents the encoding of the file. If the stream is write mode and no encoding is specified, returns nil
.
Specify the encoding of the StringIO
as ext_enc. Use the default external encoding if ext_enc is nil. 2nd argument int_enc and optional hash opt argument are ignored; they are for API compatibility to IO
.
Evaluates a string containing Ruby
source code, or the given block, within the context of the receiver (obj). In order to set the context, the variable self
is set to obj while the code is executing, giving the code access to obj’s instance variables and private methods.
When instance_eval
is given a block, obj is also passed in as the block’s only argument.
When instance_eval
is given a String
, the optional second and third parameters supply a filename and starting line number that are used when reporting compilation errors.
class KlassWithSecret def initialize @secret = 99 end private def the_secret "Ssssh! The secret is #{@secret}." end end k = KlassWithSecret.new k.instance_eval { @secret } #=> 99 k.instance_eval { the_secret } #=> "Ssssh! The secret is 99." k.instance_eval {|obj| obj == self } #=> true
Executes the given block within the context of the receiver (obj). In order to set the context, the variable self
is set to obj while the code is executing, giving the code access to obj’s instance variables. Arguments are passed as block parameters.
class KlassWithSecret def initialize @secret = 99 end end k = KlassWithSecret.new k.instance_exec(5) {|x| @secret+x } #=> 104
Invoked by Ruby
when obj is sent a message it cannot handle. symbol is the symbol for the method called, and args are any arguments that were passed to it. By default, the interpreter raises an error when this method is called. However, it is possible to override the method to provide more dynamic behavior. If it is decided that a particular method should not be handled, then super should be called, so that ancestors can pick up the missing method. The example below creates a class Roman
, which responds to methods with names consisting of roman numerals, returning the corresponding integer values.
class Roman def roman_to_int(str) # ... end def method_missing(symbol, *args) str = symbol.id2name begin roman_to_int(str) rescue super(symbol, *args) end end end r = Roman.new r.iv #=> 4 r.xxiii #=> 23 r.mm #=> 2000 r.foo #=> NoMethodError
Returns the external encoding for files read from ARGF
as an Encoding
object. The external encoding is the encoding of the text as stored in a file. Contrast with ARGF.internal_encoding
, which is the encoding used to represent this text within Ruby
.
To set the external encoding use ARGF.set_encoding
.
For example:
ARGF.external_encoding #=> #<Encoding:UTF-8>
If single argument is specified, strings read from ARGF
are tagged with the encoding specified.
If two encoding names separated by a colon are given, e.g. “ascii:utf-8”, the read string is converted from the first encoding (external encoding) to the second encoding (internal encoding), then tagged with the second encoding.
If two arguments are specified, they must be encoding objects or encoding names. Again, the first specifies the external encoding; the second specifies the internal encoding.
If the external encoding and the internal encoding are specified, the optional Hash
argument can be used to adjust the conversion process. The structure of this hash is explained in the String#encode
documentation.
For example:
ARGF.set_encoding('ascii') # Tag the input as US-ASCII text ARGF.set_encoding(Encoding::UTF_8) # Tag the input as UTF-8 text ARGF.set_encoding('utf-8','ascii') # Transcode the input from US-ASCII # to UTF-8.
Returns a hash of the name/value pairs, to use in pattern matching.
Measure = Data.define(:amount, :unit) distance = Measure[10, 'km'] distance.deconstruct_keys(nil) #=> {:amount=>10, :unit=>"km"} distance.deconstruct_keys([:amount]) #=> {:amount=>10} # usage case distance in amount:, unit: 'km' # calls #deconstruct_keys underneath puts "It is #{amount} kilometers away" else puts "Don't know how to handle it" end # prints "It is 10 kilometers away"
Or, with checking the class, too:
case distance in Measure(amount:, unit: 'km') puts "It is #{amount} kilometers away" # ... end
Returns a hash of the named captures for the given names.
m = /(?<hours>\d{2}):(?<minutes>\d{2}):(?<seconds>\d{2})/.match("18:37:22") m.deconstruct_keys([:hours, :minutes]) # => {:hours => "18", :minutes => "37"} m.deconstruct_keys(nil) # => {:hours => "18", :minutes => "37", :seconds => "22"}
Returns an empty hash if no named captures were defined:
m = /(\d{2}):(\d{2}):(\d{2})/.match("18:37:22") m.deconstruct_keys(nil) # => {}
Returns the original name of the method.
class C def foo; end alias bar foo end C.instance_method(:bar).original_name # => :foo
Returns the original name of the method.
class C def foo; end alias bar foo end C.instance_method(:bar).original_name # => :foo
Closes the outgoing port and returns whether it was already closed. All further attempts to Ractor.yield
in the ractor, and take
from the ractor will fail with Ractor::ClosedError
.
r = Ractor.new {sleep(500)} r.close_outgoing #=> false r.close_outgoing #=> true r.take # Ractor::ClosedError (The outgoing-port is already closed)
Returns the index of the first element that meets a specified criterion, or nil
if no such element is found.
With argument object
given, returns the index of the first element that is ==
object
:
['a', 'b', 'c', 'b'].find_index('b') # => 1
With a block given, calls the block with successive elements; returns the first element for which the block returns a truthy value:
['a', 'b', 'c', 'b'].find_index {|element| element.start_with?('b') } # => 1 {foo: 0, bar: 1, baz: 2}.find_index {|key, value| value > 1 } # => 2
With no argument and no block given, returns an Enumerator
.
Adds aProc as a finalizer, to be called after obj was destroyed. The object ID of the obj will be passed as an argument to aProc. If aProc is a lambda or method, make sure it can be called with a single argument.
The return value is an array [0, aProc]
.
The two recommended patterns are to either create the finaliser proc in a non-instance method where it can safely capture the needed state, or to use a custom callable object that stores the needed state explicitly as instance variables.
class Foo def initialize(data_needed_for_finalization) ObjectSpace.define_finalizer(self, self.class.create_finalizer(data_needed_for_finalization)) end def self.create_finalizer(data_needed_for_finalization) proc { puts "finalizing #{data_needed_for_finalization}" } end end class Bar class Remover def initialize(data_needed_for_finalization) @data_needed_for_finalization = data_needed_for_finalization end def call(id) puts "finalizing #{@data_needed_for_finalization}" end end def initialize(data_needed_for_finalization) ObjectSpace.define_finalizer(self, Remover.new(data_needed_for_finalization)) end end
Note that if your finalizer references the object to be finalized it will never be run on GC
, although it will still be run at exit. You will get a warning if you capture the object to be finalized as the receiver of the finalizer.
class CapturesSelf def initialize(name) ObjectSpace.define_finalizer(self, proc { # this finalizer will only be run on exit puts "finalizing #{name}" }) end end
Also note that finalization can be unpredictable and is never guaranteed to be run except on exit.
Removes all finalizers for obj.
Parse a YAML
string in yaml
. Returns the Psych::Nodes::Stream
. This method can handle multiple YAML
documents contained in yaml
. filename
is used in the exception message if a Psych::SyntaxError
is raised.
If a block is given, a Psych::Nodes::Document
node will be yielded to the block as it’s being parsed.
Raises a Psych::SyntaxError
when a YAML
syntax error is detected.
Example:
Psych.parse_stream("---\n - a\n - b") # => #<Psych::Nodes::Stream:0x00> Psych.parse_stream("--- a\n--- b") do |node| node # => #<Psych::Nodes::Document:0x00> end begin Psych.parse_stream("--- `", filename: "file.txt") rescue Psych::SyntaxError => ex ex.file # => 'file.txt' ex.message # => "(file.txt): found character that cannot start any token" end
Raises a TypeError
when NilClass
is passed.
See Psych::Nodes
for more information about YAML
AST.