Gem::StreamUI
implements a simple stream based user interface.
Find
mis-matched syntax based on lexical count
Used for detecting missing pairs of elements each keyword needs an end, each ‘{’ needs a ‘}’ etc.
Example:
left_right = LeftRightLexCount.new left_right.count_kw left_right.missing.first # => "end" left_right = LeftRightLexCount.new source = "{ a: b, c: d" # Note missing '}' LexAll.new(source: source).each do |lex| left_right.count_lex(lex) end left_right.missing.first # => "}"
Keeps track of what elements are in the queue in priority and also ensures that when one element engulfs/covers/eats another that the larger element evicts the smaller element
Holds elements in a priority heap on insert
Instead of constantly calling ‘sort!`, put the element where it belongs the first time around
Example:
queue = PriorityQueue.new queue << 33 queue << 44 queue << 1 puts queue.peek # => 44
Capture
parse errors from Ripper
Prism
returns the errors with their messages, but Ripper
does not. To get them we must make a custom subclass.
Example:
puts RipperErrors.new(" def foo").call.errors # => ["syntax error, unexpected end-of-input, expecting ';' or '\\n'"]
Used to construct C classes (CUnion
, CStruct
, etc)
Fiddle::Importer#struct
and Fiddle::Importer#union
wrap this functionality in an easy-to-use manner.
Helper methods for both Gem::Installer
and Gem::Uninstaller
Numeric is the class from which all higher-level numeric classes should inherit.
Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as Integer
are implemented as immediates, which means that each Integer
is a single immutable object which is always passed by value.
a = 1 1.object_id == a.object_id #=> true
There can only ever be one instance of the integer 1
, for example. Ruby ensures this by preventing instantiation. If duplication is attempted, the same instance is returned.
Integer.new(1) #=> NoMethodError: undefined method `new' for Integer:Class 1.dup #=> 1 1.object_id == 1.dup.object_id #=> true
For this reason, Numeric should be used when defining other numeric classes.
Classes which inherit from Numeric must implement coerce
, which returns a two-member Array
containing an object that has been coerced into an instance of the new class and self
(see coerce
).
Inheriting classes should also implement arithmetic operator methods (+
, -
, *
and /
) and the <=>
operator (see Comparable
). These methods may rely on coerce
to ensure interoperability with instances of other numeric classes.
class Tally < Numeric def initialize(string) @string = string end def to_s @string end def to_i @string.size end def coerce(other) [self.class.new('|' * other.to_i), self] end def <=>(other) to_i <=> other.to_i end def +(other) self.class.new('|' * (to_i + other.to_i)) end def -(other) self.class.new('|' * (to_i - other.to_i)) end def *(other) self.class.new('|' * (to_i * other.to_i)) end def /(other) self.class.new('|' * (to_i / other.to_i)) end end tally = Tally.new('||') puts tally * 2 #=> "||||" puts tally > 1 #=> true
First, what’s elsewhere. Class Numeric:
Inherits from class Object.
Includes module Comparable.
Here, class Numeric provides methods for:
finite?
: Returns true unless self
is infinite or not a number.
infinite?
: Returns -1, nil
or +1, depending on whether self
is -Infinity<tt>, finite, or <tt>+Infinity
.
integer?
: Returns whether self
is an integer.
negative?
: Returns whether self
is negative.
nonzero?
: Returns whether self
is not zero.
positive?
: Returns whether self
is positive.
real?
: Returns whether self
is a real value.
zero?
: Returns whether self
is zero.
<=>
: Returns:
-1 if self
is less than the given value.
0 if self
is equal to the given value.
1 if self
is greater than the given value.
nil
if self
and the given value are not comparable.
eql?
: Returns whether self
and the given value have the same value and type.
%
(aliased as modulo
): Returns the remainder of self
divided by the given value.
-@
: Returns the value of self
, negated.
abs
(aliased as magnitude
): Returns the absolute value of self
.
abs2
: Returns the square of self
.
angle
(aliased as arg
and phase
): Returns 0 if self
is positive, Math::PI otherwise.
ceil
: Returns the smallest number greater than or equal to self
, to a given precision.
coerce
: Returns array [coerced_self, coerced_other]
for the given other value.
conj
(aliased as conjugate
): Returns the complex conjugate of self
.
denominator
: Returns the denominator (always positive) of the Rational
representation of self
.
div
: Returns the value of self
divided by the given value and converted to an integer.
divmod
: Returns array [quotient, modulus]
resulting from dividing self
the given divisor.
fdiv
: Returns the Float
result of dividing self
by the given divisor.
floor
: Returns the largest number less than or equal to self
, to a given precision.
i
: Returns the Complex
object Complex(0, self)
. the given value.
imaginary
(aliased as imag
): Returns the imaginary part of the self
.
numerator
: Returns the numerator of the Rational
representation of self
; has the same sign as self
.
polar
: Returns the array [self.abs, self.arg]
.
quo
: Returns the value of self
divided by the given value.
real
: Returns the real part of self
.
rect
(aliased as rectangular
): Returns the array [self, 0]
.
remainder
: Returns self-arg*(self/arg).truncate
for the given arg
.
round
: Returns the value of self
rounded to the nearest value for the given a precision.
to_int
: Returns the Integer
representation of self
, truncating if necessary.
truncate
: Returns self
truncated (toward zero) to a given precision.
Raised to stop the iteration, in particular by Enumerator#next
. It is rescued by Kernel#loop
.
loop do puts "Hello" raise StopIteration puts "World" end puts "Done!"
produces:
Hello Done!
Raised by exit
to initiate the termination of the script.
The most standard error types are subclasses of StandardError
. A rescue clause without an explicit Exception
class will rescue all StandardErrors (and only those).
def foo raise "Oups" end foo rescue "Hello" #=> "Hello"
On the other hand:
require 'does/not/exist' rescue "Hi"
raises the exception:
LoadError: no such file to load -- does/not/exist
No longer used by internal code.
SystemCallError
is the base class for all low-level platform-dependent errors.
The errors available on the current platform are subclasses of SystemCallError
and are defined in the Errno
module.
File.open("does/not/exist")
raises the exception:
Errno::ENOENT: No such file or directory - does/not/exist
The Addrinfo
class maps struct addrinfo
to ruby. This structure identifies an Internet host and a service.
IPAddr
provides a set of methods to manipulate an IP address. Both IPv4 and IPv6 are supported.
require 'ipaddr' ipaddr1 = IPAddr.new "3ffe:505:2::1" p ipaddr1 #=> #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0001/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff> p ipaddr1.to_s #=> "3ffe:505:2::1" ipaddr2 = ipaddr1.mask(48) #=> #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0000/ffff:ffff:ffff:0000:0000:0000:0000:0000> p ipaddr2.to_s #=> "3ffe:505:2::" ipaddr3 = IPAddr.new "192.168.2.0/24" p ipaddr3 #=> #<IPAddr: IPv4:192.168.2.0/255.255.255.0>
This class implements a pretty printing algorithm. It finds line breaks and nice indentations for grouped structure.
By default, the class assumes that primitive elements are strings and each byte in the strings have single column in width. But it can be used for other situations by giving suitable arguments for some methods:
newline object and space generation block for PrettyPrint.new
optional width argument for PrettyPrint#text
There are several candidate uses:
text formatting using proportional fonts
multibyte characters which has columns different to number of bytes
non-string formatting
Box based formatting?
Other (better) model/algorithm?
Report any bugs at bugs.ruby-lang.org
Christian Lindig, Strictly Pretty, March 2000, lindig.github.io/papers/strictly-pretty-2000.pdf
Philip Wadler, A prettier printer, March 1998, homepages.inf.ed.ac.uk/wadler/topics/language-design.html#prettier
Tanaka Akira <akr@fsij.org>
PStore implements a file based persistence mechanism based on a Hash
. User code can store hierarchies of Ruby objects (values) into the data store by name (keys). An object hierarchy may be just a single object. User code may later read values back from the data store or even update data, as needed.
The transactional behavior ensures that any changes succeed or fail together. This can be used to ensure that the data store is not left in a transitory state, where some values were updated but others were not.
Behind the scenes, Ruby objects are stored to the data store file with Marshal
. That carries the usual limitations. Proc
objects cannot be marshalled, for example.
There are three important concepts here (details at the links):
Store: a store is an instance of PStore.
Entries: the store is hash-like; each entry is the key for a stored object.
Transactions: each transaction is a collection of prospective changes to the store; a transaction is defined in the block given with a call to PStore#transaction
.
Examples on this page need a store that has known properties. They can get a new (and populated) store by calling thus:
example_store do |store| # Example code using store goes here. end
All we really need to know about example_store
is that it yields a fresh store with a known population of entries; its implementation:
require 'pstore' require 'tempfile' # Yield a pristine store for use in examples. def example_store # Create the store in a temporary file. Tempfile.create do |file| store = PStore.new(file) # Populate the store. store.transaction do store[:foo] = 0 store[:bar] = 1 store[:baz] = 2 end yield store end end
The contents of the store are maintained in a file whose path is specified when the store is created (see PStore.new
). The objects are stored and retrieved using module Marshal
, which means that certain objects cannot be added to the store; see Marshal::dump.
A store may have any number of entries. Each entry has a key and a value, just as in a hash:
Key: as in a hash, the key can be (almost) any object; see Hash Keys. You may find it convenient to keep it simple by using only symbols or strings as keys.
Value: the value may be any object that can be marshalled by Marshal (see Marshal::dump) and in fact may be a collection (e.g., an array, a hash, a set, a range, etc). That collection may in turn contain nested objects, including collections, to any depth; those objects must also be Marshal-able. See Hierarchical Values.
The block given with a call to method transaction
# contains a transaction, which consists of calls to PStore methods that read from or write to the store (that is, all PStore methods except transaction
itself, path
, and Pstore.new):
example_store do |store| store.transaction do store.keys # => [:foo, :bar, :baz] store[:bat] = 3 store.keys # => [:foo, :bar, :baz, :bat] end end
Execution of the transaction is deferred until the block exits, and is executed atomically (all-or-nothing): either all transaction calls are executed, or none are. This maintains the integrity of the store.
Other code in the block (including even calls to path
and PStore.new
) is executed immediately, not deferred.
The transaction block:
May not contain a nested call to transaction
.
Is the only context where methods that read from or write to the store are allowed.
As seen above, changes in a transaction are made automatically when the block exits. The block may be exited early by calling method commit
or abort
.
Method
commit
triggers the update to the store and exits the block:
example_store do |store| store.transaction do store.keys # => [:foo, :bar, :baz] store[:bat] = 3 store.commit fail 'Cannot get here' end store.transaction do # Update was completed. store.keys # => [:foo, :bar, :baz, :bat] end end
Method
abort
discards the update to the store and exits the block:
example_store do |store| store.transaction do store.keys # => [:foo, :bar, :baz] store[:bat] = 3 store.abort fail 'Cannot get here' end store.transaction do # Update was not completed. store.keys # => [:foo, :bar, :baz] end end
By default, a transaction allows both reading from and writing to the store:
store.transaction do # Read-write transaction. # Any code except a call to #transaction is allowed here. end
If argument read_only
is passed as true
, only reading is allowed:
store.transaction(true) do # Read-only transaction: # Calls to #transaction, #[]=, and #delete are not allowed here. end
The value for an entry may be a simple object (as seen above). It may also be a hierarchy of objects nested to any depth:
deep_store = PStore.new('deep.store') deep_store.transaction do array_of_hashes = [{}, {}, {}] deep_store[:array_of_hashes] = array_of_hashes deep_store[:array_of_hashes] # => [{}, {}, {}] hash_of_arrays = {foo: [], bar: [], baz: []} deep_store[:hash_of_arrays] = hash_of_arrays deep_store[:hash_of_arrays] # => {:foo=>[], :bar=>[], :baz=>[]} deep_store[:hash_of_arrays][:foo].push(:bat) deep_store[:hash_of_arrays] # => {:foo=>[:bat], :bar=>[], :baz=>[]} end
And recall that you can use dig methods in a returned hierarchy of objects.
Use method PStore.new
to create a store. The new store creates or opens its containing file:
store = PStore.new('t.store')
Use method []=
to update or create an entry:
example_store do |store| store.transaction do store[:foo] = 1 # Update. store[:bam] = 1 # Create. end end
Use method delete
to remove an entry:
example_store do |store| store.transaction do store.delete(:foo) store[:foo] # => nil end end
Use method fetch
(allows default) or []
(defaults to nil
) to retrieve an entry:
example_store do |store| store.transaction do store[:foo] # => 0 store[:nope] # => nil store.fetch(:baz) # => 2 store.fetch(:nope, nil) # => nil store.fetch(:nope) # Raises exception. end end
Use method key?
to determine whether a given key exists:
example_store do |store| store.transaction do store.key?(:foo) # => true end end
Use method keys
to retrieve keys:
example_store do |store| store.transaction do store.keys # => [:foo, :bar, :baz] end end
Use method path
to retrieve the path to the store’s underlying file; this method may be called from outside a transaction block:
store = PStore.new('t.store') store.path # => "t.store"
For transaction safety, see:
Optional argument thread_safe
at method PStore.new
.
Attribute ultra_safe
.
Needless to say, if you’re storing valuable data with PStore, then you should backup the PStore file from time to time.
require "pstore" # A mock wiki object. class WikiPage attr_reader :page_name def initialize(page_name, author, contents) @page_name = page_name @revisions = Array.new add_revision(author, contents) end def add_revision(author, contents) @revisions << {created: Time.now, author: author, contents: contents} end def wiki_page_references [@page_name] + @revisions.last[:contents].scan(/\b(?:[A-Z]+[a-z]+){2,}/) end end # Create a new wiki page. home_page = WikiPage.new("HomePage", "James Edward Gray II", "A page about the JoysOfDocumentation..." ) wiki = PStore.new("wiki_pages.pstore") # Update page data and the index together, or not at all. wiki.transaction do # Store page. wiki[home_page.page_name] = home_page # Create page index. wiki[:wiki_index] ||= Array.new # Update wiki index. wiki[:wiki_index].push(*home_page.wiki_page_references) end # Read wiki data, setting argument read_only to true. wiki.transaction(true) do wiki.keys.each do |key| puts key puts wiki[key] end end
The class of the singleton object true
.
Several of its methods act as operators:
One other method: