InlineComment
objects are the most common. They correspond to comments in the source file like this one that start with #.
The command manager registers and installs all the individual sub-commands supported by the gem command.
Extra commands can be provided by writing a rubygems_plugin.rb file in an installed gem. You should register your command against the Gem::CommandManager
instance, like this:
# file rubygems_plugin.rb require 'rubygems/command_manager' Gem::CommandManager.instance.register_command :edit
You should put the implementation of your command in rubygems/commands.
# file rubygems/commands/edit_command.rb class Gem::Commands::EditCommand < Gem::Command # ... end
See Gem::Command
for instructions on writing gem commands.
Raised when trying to activate a gem, and that gem does not exist on the system. Instead of rescuing from this class, make sure to rescue from the superclass Gem::LoadError
to catch all types of load errors.
Raised when trying to activate a gem, and the gem exists on the system, but not the requested version. Instead of rescuing from this class, make sure to rescue from the superclass Gem::LoadError
to catch all types of load errors.
Generated when trying to lookup a gem to indicate that the gem was found, but that it isn’t usable on the current platform.
fetch and install read these and report them to the user to aid in figuring out why a gem couldn’t be installed.
Explains syntax errors based on their source
example:
source = "def foo; puts 'lol'" # Note missing end explain ExplainSyntax.new( code_lines: CodeLine.from_source(source) ).call explain.errors.first # => "Unmatched keyword, missing `end' ?"
When the error cannot be determined by lexical counting then the parser is run against the input and the raw errors are returned.
Example:
source = "1 * " # Note missing a second number explain ExplainSyntax.new( code_lines: CodeLine.from_source(source) ).call explain.errors.first # => "syntax error, unexpected end-of-input"
Raised when a mathematical function is evaluated outside of its domain of definition.
For example, since cos
returns values in the range -1..1, its inverse function acos
is only defined on that interval:
Math.acos(42)
produces:
Math::DomainError: Numerical argument is out of domain - "acos"
Helper methods for both Gem::Installer
and Gem::Uninstaller
An error class raised when missing nodes are found while computing a constant path’s full name. For example:
-> raises because the constant path is missing the last part
Shows the context around code provided by “falling” indentation
If this is the original code lines:
class OH def hello it "foo" do end end
And this is the line that is captured
it "foo" do
It will yield its surrounding context:
class OH def hello end end
Example:
FallingIndentLines.new( block: block, code_lines: @code_lines ).call do |line| @lines_to_output << line end
Enumerator::Chain
is a subclass of Enumerator
, which represents a chain of enumerables that works as a single enumerator.
This type of objects can be created by Enumerable#chain
and Enumerator#+
.
This exception is raised if the nesting of parsed data structures is too deep.
This class is used as a return value from ObjectSpace::reachable_objects_from
.
When ObjectSpace::reachable_objects_from
returns an object with references to an internal object, an instance of this class is returned.
You can use the type
method to check the type of the internal object.
OpenSSL::HMAC
allows computing Hash-based Message Authentication Code (HMAC
). It is a type of message authentication code (MAC) involving a hash function in combination with a key. HMAC
can be used to verify the integrity of a message as well as the authenticity.
OpenSSL::HMAC
has a similar interface to OpenSSL::Digest
.
key = "key" data = "message-to-be-authenticated" mac = OpenSSL::HMAC.hexdigest("SHA256", key, data) #=> "cddb0db23f469c8bf072b21fd837149bd6ace9ab771cceef14c9e517cc93282e"
data1 = File.binread("file1") data2 = File.binread("file2") key = "key" hmac = OpenSSL::HMAC.new(key, 'SHA256') hmac << data1 hmac << data2 mac = hmac.digest
This class is the access to openssl’s ENGINE cryptographic module implementation.
See also, www.openssl.org/docs/crypto/engine.html
Document-class: OpenSSL::HMAC
OpenSSL::HMAC
allows computing Hash-based Message Authentication Code (HMAC
). It is a type of message authentication code (MAC) involving a hash function in combination with a key. HMAC
can be used to verify the integrity of a message as well as the authenticity.
OpenSSL::HMAC
has a similar interface to OpenSSL::Digest
.
key = "key" data = "message-to-be-authenticated" mac = OpenSSL::HMAC.hexdigest("SHA256", key, data) #=> "cddb0db23f469c8bf072b21fd837149bd6ace9ab771cceef14c9e517cc93282e"
data1 = File.binread("file1") data2 = File.binread("file2") key = "key" hmac = OpenSSL::HMAC.new(key, 'SHA256') hmac << data1 hmac << data2 mac = hmac.digest
Subclasses ‘BadAlias` for backwards compatibility