Class
for reading entries out of a tar file
module IN
contains ARPA Internet specific RRs.
Assigns the underlying string as other_string
, and sets position to zero; returns other_string
:
StringIO.open('foo') do |strio| p strio.string strio.string = 'bar' p strio.string end
Output:
"foo" "bar"
Related: StringIO#string
(returns the underlying string).
Replaces the [stored string] with the given other_string
:
Sets both [positions] to zero.
Clears [match values].
Returns other_string
.
scanner = StringScanner.new('foobar') scanner.scan(/foo/) put_situation(scanner) # Situation: # pos: 3 # charpos: 3 # rest: "bar" # rest_size: 3 match_values_cleared?(scanner) # => false scanner.string = 'baz' # => "baz" put_situation(scanner) # Situation: # pos: 0 # charpos: 0 # rest: "baz" # rest_size: 3 match_values_cleared?(scanner) # => true
Adds a post-installs hook that will be passed a Gem::DependencyInstaller
and a list of installed specifications when Gem::DependencyInstaller#install
is complete
Returns the list of Modules
nested at the point of call.
module M1 module M2 $a = Module.nesting end end $a #=> [M1::M2, M1] $a[0].name #=> "M1::M2"
Returns the binding associated with prc.
def fred(param) proc {} end b = fred(99) eval("param", b.binding) #=> 99
Returns the generated binding object from the event.
Note that for :c_call
and :c_return
events, the method returns nil
, since C methods themselves do not have bindings.
Returns a Binding
object, describing the variable and method bindings at the point of call. This object can be used when calling Binding#eval
to execute the evaluated command in this environment, or extracting its local variables.
class User def initialize(name, position) @name = name @position = position end def get_binding binding end end user = User.new('Joan', 'manager') template = '{name: @name, position: @position}' # evaluate template in context of the object eval(template, user.get_binding) #=> {:name=>"Joan", :position=>"manager"}
Binding#local_variable_get
can be used to access the variables whose names are reserved Ruby
keywords:
# This is valid parameter declaration, but `if` parameter can't # be accessed by name, because it is a reserved word. def validate(field, validation, if: nil) condition = binding.local_variable_get('if') return unless condition # ...Some implementation ... end validate(:name, :empty?, if: false) # skips validation validate(:name, :empty?, if: true) # performs validation
Returns true
if the given instance variable is defined in obj. String
arguments are converted to symbols.
class Fred def initialize(p1, p2) @a, @b = p1, p2 end end fred = Fred.new('cat', 99) fred.instance_variable_defined?(:@a) #=> true fred.instance_variable_defined?("@b") #=> true fred.instance_variable_defined?("@c") #=> false
Returns whether the [position] is at the beginning of a line; that is, at the beginning of the [stored string] or immediately after a newline:
scanner = StringScanner.new(MULTILINE_TEXT) scanner.string # => "Go placidly amid the noise and haste,\nand remember what peace there may be in silence.\n" scanner.pos # => 0 scanner.beginning_of_line? # => true scanner.scan_until(/,/) # => "Go placidly amid the noise and haste," scanner.beginning_of_line? # => false scanner.scan(/\n/) # => "\n" scanner.beginning_of_line? # => true scanner.terminate scanner.beginning_of_line? # => true scanner.concat('x') scanner.terminate scanner.beginning_of_line? # => false
StringScanner#bol? is an alias for StringScanner#beginning_of_line?
.
Is this handler a streaming handler?
Returns an array of instance variable names for the receiver. Note that simply defining an accessor does not create the corresponding instance variable.
class Fred attr_accessor :a1 def initialize @iv = 3 end end Fred.new.instance_variables #=> [:@iv]
Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. For example, consider:
def Foo.const_missing(name) name # return the constant name as Symbol end Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
As the example above shows, const_missing
is not required to create the missing constant in mod, though that is often a side-effect. The caller gets its return value when triggered. If the constant is also defined, further lookups won’t hit const_missing
and will return the value stored in the constant as usual. Otherwise, const_missing
will be invoked again.
In the next example, when a reference is made to an undefined constant, const_missing
attempts to load a file whose path is the lowercase version of the constant name (thus class Fred
is assumed to be in file fred.rb
). If defined as a side-effect of loading the file, the method returns the value stored in the constant. This implements an autoload feature similar to Kernel#autoload
and Module#autoload
, though it differs in important ways.
def Object.const_missing(name) @looked_for ||= {} str_name = name.to_s raise "Constant not found: #{name}" if @looked_for[str_name] @looked_for[str_name] = 1 file = str_name.downcase require file const_get(name, false) end
Returns the Encoding
object that represents the encoding of the internal string, if conversion is specified, or nil
otherwise.
See Encodings.
Returns the Encoding
of the internal string if conversion is specified. Otherwise returns nil
.
Returns the internal encoding for strings read from ARGF
as an Encoding
object.
If ARGF.set_encoding
has been called with two encoding names, the second is returned. Otherwise, if Encoding.default_external
has been set, that value is returned. Failing that, if a default external encoding was specified on the command-line, that value is used. If the encoding is unknown, nil
is returned.