Returns the convertible integer type of the given type
. You may optionally specify additional headers
to search in for the type
. convertible means actually the same type, or typedef’d from the same type.
If the type
is an integer type and the convertible type is found, the following macros are passed as preprocessor constants to the compiler using the type
name, in uppercase.
TYPEOF_
, followed by the type
name, followed by =X
where “X” is the found convertible type name.
TYP2NUM
and NUM2TYP
, where TYP
is the type
name in uppercase with replacing an _t
suffix with “T”, followed by =X
where “X” is the macro name to convert type
to an Integer
object, and vice versa.
For example, if foobar_t
is defined as unsigned long, then convertible_int("foobar_t")
would return “unsigned long”, and define these macros:
#define TYPEOF_FOOBAR_T unsigned long #define FOOBART2NUM ULONG2NUM #define NUM2FOOBART NUM2ULONG
Convert the given options into a serialized options string.
Returns true
if self
is greater than 0, false
otherwise.
Returns true
if self
is greater than 0, false
otherwise.
Returns the birth time for the named file.
file_name can be an IO
object.
File.birthtime("testfile") #=> Wed Apr 09 08:53:13 CDT 2003
If the platform doesn’t have birthtime, raises NotImplementedError
.
Returns the birth time for file.
File.new("testfile").birthtime #=> Wed Apr 09 08:53:14 CDT 2003
If the platform doesn’t have birthtime, raises NotImplementedError
.
Checks the compatibility of two objects.
If the objects are both strings they are compatible when they are concatenatable. The encoding of the concatenated string will be returned if they are compatible, nil if they are not.
Encoding.compatible?("\xa1".force_encoding("iso-8859-1"), "b") #=> #<Encoding:ISO-8859-1> Encoding.compatible?( "\xa1".force_encoding("iso-8859-1"), "\xa1\xa1".force_encoding("euc-jp")) #=> nil
If the objects are non-strings their encodings are compatible when they have an encoding and:
Either encoding is US-ASCII compatible
One of the encodings is a 7-bit encoding
Returns true
if rat
is greater than 0.
Returns the birth time for the file. If the platform doesn’t have birthtime, raises NotImplementedError
.
See File.birthtime
.
Sets the process title that appears on the ps(1) command. Not necessarily effective on all platforms. No exception will be raised regardless of the result, nor will NotImplementedError
be raised even if the platform does not support the feature.
Calling this method does not affect the value of $0.
Process.setproctitle('myapp: worker #%d' % worker_id)
This method first appeared in Ruby 2.1 to serve as a global variable free means to change the process title.
Reads at most maxlen bytes from the gziped stream but it blocks only if gzipreader has no data immediately available. If the optional outbuf argument is present, it must reference a String
, which will receive the data. It raises EOFError
on end of file.
Reads at most maxlen bytes from the stream. If buf is provided it must reference a string which will receive the data.
See IO#readpartial
for full details.
Returns whether the form contained multipart/form-data
Returns the destination encoding as an encoding object.
Returns the destination encoding as an encoding object.
Returns the destination encoding as an Encoding
object.
Clear recorded tracing information.
Raises PStore::Error
if the calling code is not in a PStore#transaction
or if the code is in a read-only PStore#transaction
.
Yields each frame of the current execution stack as a backtrace location object.
Starts tracing object allocations from the ObjectSpace
extension module.
For example:
require 'objspace' class C include ObjectSpace def foo trace_object_allocations do obj = Object.new p "#{allocation_sourcefile(obj)}:#{allocation_sourceline(obj)}" end end end C.new.foo #=> "objtrace.rb:8"
This example has included the ObjectSpace
module to make it easier to read, but you can also use the ::trace_object_allocations
notation (recommended).
Note that this feature introduces a huge performance decrease and huge memory consumption.