Results for: "Data"

No documentation available
No documentation available

Update RubyGems software to the latest version.

No documentation available
No documentation available

Updates the TarHeader’s checksum

Returns true if this gem is installable for the current platform.

Returns true if this gem is installable for the current platform.

Returns true if this specification is installable on this platform.

Returns the element of self specified by the given index or nil if there is no such element; index must be an integer-convertible object.

For non-negative index, returns the element of self at offset index:

a = [:foo, 'bar', 2]
a.at(0)   # => :foo
a.at(2)   # => 2
a.at(2.0) # => 2

For negative index, counts backwards from the end of self:

a.at(-2) # => "bar"

Related: Array#[]; see also Methods for Fetching.

Adds to self all elements from each array in other_arrays; returns self:

a = [0, 1]
a.concat(['two', 'three'], [:four, :five], a)
# => [0, 1, "two", "three", :four, :five, 0, 1]

Related: see Methods for Assigning.

Returns a new array that is a recursive flattening of self to depth levels of recursion; depth must be an integer-convertible object or nil. At each level of recursion:

With non-negative integer argument depth, flattens recursively through depth levels:

a = [ 0, [ 1, [2, 3], 4 ], 5, {foo: 0}, Set.new([6, 7]) ]
a              # => [0, [1, [2, 3], 4], 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(0)   # => [0, [1, [2, 3], 4], 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(1  ) # => [0, 1, [2, 3], 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(1.1) # => [0, 1, [2, 3], 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(2)   # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(3)   # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]

With nil or negative depth, flattens all levels.

a.flatten     # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.flatten(-1) # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]

Related: Array#flatten!; see also Methods for Converting.

Returns self as a recursively flattening of self to depth levels of recursion; depth must be an integer-convertible object, or nil. At each level of recursion:

Returns nil if no elements were flattened.

With non-negative integer argument depth, flattens recursively through depth levels:

a = [ 0, [ 1, [2, 3], 4 ], 5, {foo: 0}, Set.new([6, 7]) ]
a                   # => [0, [1, [2, 3], 4], 5, {:foo=>0}, #<Set: {6, 7}>]
a.dup.flatten!(1)   # => [0, 1, [2, 3], 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.dup.flatten!(1.1) # => [0, 1, [2, 3], 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.dup.flatten!(2)   # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.dup.flatten!(3)   # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]

With nil or negative argument depth, flattens all levels:

a.dup.flatten!     # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]
a.dup.flatten!(-1) # => [0, 1, 2, 3, 4, 5, {:foo=>0}, #<Set: {6, 7}>]

Related: Array#flatten; see also Methods for Assigning.

When a block and a positive integer-convertible object argument count (0 < count <= self.size) are given, calls the block with each combination of self of size count; returns self:

a = %w[a b c]                                   # => ["a", "b", "c"]
a.combination(2) {|combination| p combination } # => ["a", "b", "c"]

Output:

["a", "b"]
["a", "c"]
["b", "c"]

The order of the yielded combinations is not guaranteed.

When count is zero, calls the block once with a new empty array:

a.combination(0) {|combination| p combination }
[].combination(0) {|combination| p combination }

Output:

[]
[]

When count is negative or larger than self.size and self is non-empty, does not call the block:

a.combination(-1) {|combination| fail 'Cannot happen' } # => ["a", "b", "c"]
a.combination(4)  {|combination| fail 'Cannot happen' } # => ["a", "b", "c"]

With no block given, returns a new Enumerator.

Related: Array#permutation; see also Methods for Iterating.

Returns a new array containing the first count element of self (as available); count must be a non-negative numeric; does not modify self:

a = ['a', 'b', 'c', 'd']
a.take(2)   # => ["a", "b"]
a.take(2.1) # => ["a", "b"]
a.take(50)  # => ["a", "b", "c", "d"]
a.take(0)   # => []

Related: see Methods for Fetching.

Returns self truncated (toward zero) to a precision of ndigits decimal digits.

When ndigits is negative, the returned value has at least ndigits.abs trailing zeros:

555.truncate(-1)  # => 550
555.truncate(-2)  # => 500
-555.truncate(-2) # => -500

Returns self when ndigits is zero or positive.

555.truncate     # => 555
555.truncate(50) # => 555

Related: Integer#round.

Returns self.

Returns 1.

Returns the value as a rational. The optional argument eps is always ignored.

Return the class or module refined by the receiver.

module M
  refine String do
  end
end

M.refinements[0].target # => String

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:

Complex.rect(3)             # => (3+0i)
Complex.rect(3, Math::PI)   # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)

Complex.rectangular is an alias for Complex.rect.

Returns the array [self.real, self.imag]:

Complex.rect(1, 2).rect # => [1, 2]

See Rectangular Coordinates.

If self was created with polar coordinates, the returned value is computed, and may be inexact:

Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]

Complex#rectangular is an alias for Complex#rect.

Returns the conjugate of self, Complex.rect(self.imag, self.real):

Complex.rect(1, 2).conj # => (1-2i)

Returns the Complex object created from the numerators of the real and imaginary parts of self, after converting each part to the lowest common denominator of the two:

c = Complex.rect(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i)
c.numerator                                      # => (8+9i)

In this example, the lowest common denominator of the two parts is 12; the two converted parts may be thought of as Rational(8, 12) and Rational(9, 12), whose numerators, respectively, are 8 and 9; so the returned value of c.numerator is Complex.rect(8, 9).

Related: Complex#denominator.

Returns the denominator of self, which is the least common multiple of self.real.denominator and self.imag.denominator:

Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6

Note that n.denominator of a non-rational numeric is 1.

Related: Complex#numerator.

Search took: 2ms  ·  Total Results: 1499