Equivalent to method Kernel#gets
, except that it raises an exception if called at end-of-stream:
$ cat t.txt | ruby -e "p readlines; readline" ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] in `readline': end of file reached (EOFError)
Optional keyword argument chomp
specifies whether line separators are to be omitted.
Returns an array containing the lines returned by calling Kernel#gets
until the end-of-stream is reached; (see Line IO).
With only string argument sep
given, returns the remaining lines as determined by line separator sep
, or nil
if none; see Line Separator:
# Default separator. $ cat t.txt | ruby -e "p readlines" ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] # Specified separator. $ cat t.txt | ruby -e "p readlines 'li'" ["First li", "ne\nSecond li", "ne\n\nFourth li", "ne\nFifth li", "ne\n"] # Get-all separator. $ cat t.txt | ruby -e "p readlines nil" ["First line\nSecond line\n\nFourth line\nFifth line\n"] # Get-paragraph separator. $ cat t.txt | ruby -e "p readlines ''" ["First line\nSecond line\n\n", "Fourth line\nFifth line\n"]
With only integer argument limit
given, limits the number of bytes in the line; see Line Limit:
$cat t.txt | ruby -e "p readlines 10" ["First line", "\n", "Second lin", "e\n", "\n", "Fourth lin", "e\n", "Fifth line", "\n"] $cat t.txt | ruby -e "p readlines 11" ["First line\n", "Second line", "\n", "\n", "Fourth line", "\n", "Fifth line\n"] $cat t.txt | ruby -e "p readlines 12" ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
With arguments sep
and limit
given, combines the two behaviors (see Line Separator and Line Limit).
Optional keyword argument chomp
specifies whether line separators are to be omitted:
$ cat t.txt | ruby -e "p readlines(chomp: true)" ["First line", "Second line", "", "Fourth line", "Fifth line"]
Optional keyword arguments enc_opts
specify encoding options; see Encoding options.
Suspends execution of the current thread for the number of seconds specified by numeric argument secs
, or forever if secs
is nil
; returns the integer number of seconds suspended (rounded).
Time.new # => 2008-03-08 19:56:19 +0900 sleep 1.2 # => 1 Time.new # => 2008-03-08 19:56:20 +0900 sleep 1.9 # => 2 Time.new # => 2008-03-08 19:56:22 +0900
Returns the result of applying a reducer to an initial value and the first element of the Enumerable
. It then takes the result and applies the function to it and the second element of the collection, and so on. The return value is the result returned by the final call to the function.
You can think of
[ a, b, c, d ].inject(i) { |r, v| fn(r, v) }
as being
fn(fn(fn(fn(i, a), b), c), d)
In a way the inject
function injects the function between the elements of the enumerable.
inject
is aliased as reduce
. You use it when you want to reduce a collection to a single value.
The Calling Sequences
Let’s start with the most verbose:
enum.inject(initial_value) do |result, next_value| # do something with +result+ and +next_value+ # the value returned by the block becomes the # value passed in to the next iteration # as +result+ end
For example:
product = [ 2, 3, 4 ].inject(1) do |result, next_value| result * next_value end product #=> 24
When this runs, the block is first called with 1
(the initial value) and 2
(the first element of the array). The block returns 1*2
, so on the next iteration the block is called with 2
(the previous result) and 3
. The block returns 6
, and is called one last time with 6
and 4
. The result of the block, 24
becomes the value returned by inject
. This code returns the product of the elements in the enumerable.
First Shortcut: Default Initial value
In the case of the previous example, the initial value, 1
, wasn’t really necessary: the calculation of the product of a list of numbers is self-contained.
In these circumstances, you can omit the initial_value
parameter. inject
will then initially call the block with the first element of the collection as the result
parameter and the second element as the next_value
.
[ 2, 3, 4 ].inject do |result, next_value| result * next_value end
This shortcut is convenient, but can only be used when the block produces a result which can be passed back to it as a first parameter.
Here’s an example where that’s not the case: it returns a hash where the keys are words and the values are the number of occurrences of that word in the enumerable.
freqs = File.read("README.md") .scan(/\w{2,}/) .reduce(Hash.new(0)) do |counts, word| counts[word] += 1 counts end freqs #=> {"Actions"=>4, "Status"=>5, "MinGW"=>3, "https"=>27, "github"=>10, "com"=>15, ...
Note that the last line of the block is just the word counts
. This ensures the return value of the block is the result that’s being calculated.
Second Shortcut: a Reducer function
A reducer function is a function that takes a partial result and the next value, returning the next partial result. The block that is given to inject
is a reducer.
You can also write a reducer as a function and pass the name of that function (as a symbol) to inject
. However, for this to work, the function
Must be defined on the type of the result value
Must accept a single parameter, the next value in the collection, and
Must return an updated result which will also implement the function.
Here’s an example that adds elements to a string. The two calls invoke the functions String#concat
and String#+
on the result so far, passing it the next value.
s = [ "cat", " ", "dog" ].inject("", :concat) s #=> "cat dog" s = [ "cat", " ", "dog" ].inject("The result is:", :+) s #=> "The result is: cat dog"
Here’s a more complex example when the result object maintains state of a different type to the enumerable elements.
class Turtle def initialize @x = @y = 0 end def move(dir) case dir when "n" then @y += 1 when "s" then @y -= 1 when "e" then @x += 1 when "w" then @x -= 1 end self end end position = "nnneesw".chars.reduce(Turtle.new, :move) position #=>> #<Turtle:0x00000001052f4698 @y=2, @x=1>
Third Shortcut: Reducer With no Initial Value
If your reducer returns a value that it can accept as a parameter, then you don’t have to pass in an initial value. Here :*
is the name of the times function:
product = [ 2, 3, 4 ].inject(:*) product # => 24
String
concatenation again:
s = [ "cat", " ", "dog" ].inject(:+) s #=> "cat dog"
And an example that converts a hash to an array of two-element subarrays.
nested = {foo: 0, bar: 1}.inject([], :push) nested # => [[:foo, 0], [:bar, 1]]
Returns the number of online processors.
The result is intended as the number of processes to use all available processors.
This method is implemented using:
sched_getaffinity(): Linux
sysconf(_SC_NPROCESSORS_ONLN): GNU/Linux, NetBSD, FreeBSD, OpenBSD, DragonFly BSD, OpenIndiana, Mac OS X, AIX
Example:
require 'etc' p Etc.nprocessors #=> 4
The result might be smaller number than physical cpus especially when ruby process is bound to specific cpus. This is intended for getting better parallel processing.
Example: (Linux)
linux$ taskset 0x3 ./ruby -retc -e "p Etc.nprocessors" #=> 2
Returns true
if filepath
points to a symbolic link, false
otherwise:
symlink = File.symlink('t.txt', 'symlink') File.symlink?('symlink') # => true File.symlink?('t.txt') # => false
Returns true
if the named file has the sticky bit set.
file_name can be an IO
object.
Returns true
if the named files are identical.
file_1 and file_2 can be an IO
object.
open("a", "w") {} p File.identical?("a", "a") #=> true p File.identical?("a", "./a") #=> true File.link("a", "b") p File.identical?("a", "b") #=> true File.symlink("a", "c") p File.identical?("a", "c") #=> true open("d", "w") {} p File.identical?("a", "d") #=> false
Returns an Array
of sources to fetch remote gems from. Uses default_sources
if the sources list is empty.
Need to be able to set the sources without calling Gem.sources
.replace since that would cause an infinite loop.
DOC: This comment is not documentation about the method itself, it’s more of a code comment about the implementation.
Returns a 9-element array representing the parts of the URI formed from the string uri
; each array element is a string or nil
:
names = %w[scheme userinfo host port registry path opaque query fragment] values = URI.split('https://john.doe@www.example.com:123/forum/questions/?tag=networking&order=newest#top') names.zip(values) # => [["scheme", "https"], ["userinfo", "john.doe"], ["host", "www.example.com"], ["port", "123"], ["registry", nil], ["path", "/forum/questions/"], ["opaque", nil], ["query", "tag=networking&order=newest"], ["fragment", "top"]]
Basically a wrapper for Process.spawn
that:
Creates a child process for each of the given cmds
by calling Process.spawn
.
Pipes the stdout
from each child to the stdin
of the next child, or, for the last child, to the caller’s stdout
.
The method does not wait for child processes to exit, so the caller must do so.
With no block given, returns a 2-element array containing:
The stdout
stream of the last child process.
An array of the wait threads for all of the child processes.
Example:
last_stdout, wait_threads = Open3.pipeline_r('ls', 'grep R') # => [#<IO:fd 5>, [#<Process::Waiter:0x000055e8de2f9898 dead>, #<Process::Waiter:0x000055e8de2f94b0 sleep>]] puts last_stdout.read wait_threads.each do |wait_thread| wait_thread.join end
Output:
Rakefile README.md
With a block given, calls the block with the stdout
stream of the last child process, and an array of the wait processes:
Open3.pipeline_r('ls', 'grep R') do |last_stdout, wait_threads| puts last_stdout.read wait_threads.each do |wait_thread| wait_thread.join end end
Output:
Rakefile README.md
Like Process.spawn
, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.
If the first argument is a hash, it becomes leading argument env
in each call to Process.spawn
; see Execution Environment.
If the last argument is a hash, it becomes trailing argument options
in each call to Process.spawn
; see Execution Options.
Each remaining argument in cmds
is one of:
A command_line
: a string that begins with a shell reserved word or special built-in, or contains one or more metacharacters.
An exe_path
: the string path to an executable to be called.
An array containing a command_line
or an exe_path
, along with zero or more string arguments for the command.
Basically a wrapper for Process.spawn
that:
Creates a child process for each of the given cmds
by calling Process.spawn
.
Pipes the stdout
from each child to the stdin
of the next child, or, for the last child, to the caller’s stdout
.
The method does not wait for child processes to exit, so the caller must do so.
With no block given, returns a 2-element array containing:
The stdout
stream of the last child process.
An array of the wait threads for all of the child processes.
Example:
last_stdout, wait_threads = Open3.pipeline_r('ls', 'grep R') # => [#<IO:fd 5>, [#<Process::Waiter:0x000055e8de2f9898 dead>, #<Process::Waiter:0x000055e8de2f94b0 sleep>]] puts last_stdout.read wait_threads.each do |wait_thread| wait_thread.join end
Output:
Rakefile README.md
With a block given, calls the block with the stdout
stream of the last child process, and an array of the wait processes:
Open3.pipeline_r('ls', 'grep R') do |last_stdout, wait_threads| puts last_stdout.read wait_threads.each do |wait_thread| wait_thread.join end end
Output:
Rakefile README.md
Like Process.spawn
, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.
If the first argument is a hash, it becomes leading argument env
in each call to Process.spawn
; see Execution Environment.
If the last argument is a hash, it becomes trailing argument options
in each call to Process.spawn
; see Execution Options.
Each remaining argument in cmds
is one of:
A command_line
: a string that begins with a shell reserved word or special built-in, or contains one or more metacharacters.
An exe_path
: the string path to an executable to be called.
An array containing a command_line
or an exe_path
, along with zero or more string arguments for the command.
Basically a wrapper for Process.spawn
that:
Creates a child process for each of the given cmds
by calling Process.spawn
.
Pipes the stdout
from each child to the stdin
of the next child, or, for the first child, pipes the caller’s stdout
to the child’s stdin
.
The method does not wait for child processes to exit, so the caller must do so.
With no block given, returns a 2-element array containing:
The stdin
stream of the first child process.
An array of the wait threads for all of the child processes.
Example:
first_stdin, wait_threads = Open3.pipeline_w('sort', 'cat -n') # => [#<IO:fd 7>, [#<Process::Waiter:0x000055e8de928278 run>, #<Process::Waiter:0x000055e8de923e80 run>]] first_stdin.puts("foo\nbar\nbaz") first_stdin.close # Send EOF to sort. wait_threads.each do |wait_thread| wait_thread.join end
Output:
1 bar 2 baz 3 foo
With a block given, calls the block with the stdin
stream of the first child process, and an array of the wait processes:
Open3.pipeline_w('sort', 'cat -n') do |first_stdin, wait_threads| first_stdin.puts("foo\nbar\nbaz") first_stdin.close # Send EOF to sort. wait_threads.each do |wait_thread| wait_thread.join end end
Output:
1 bar 2 baz 3 foo
Like Process.spawn
, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.
If the first argument is a hash, it becomes leading argument env
in each call to Process.spawn
; see Execution Environment.
If the last argument is a hash, it becomes trailing argument options
in each call to Process.spawn
; see Execution Options.
Each remaining argument in cmds
is one of:
A command_line
: a string that begins with a shell reserved word or special built-in, or contains one or more metacharacters.
An exe_path
: the string path to an executable to be called.
An array containing a command_line
or an exe_path
, along with zero or more string arguments for the command.
Basically a wrapper for Process.spawn
that:
Creates a child process for each of the given cmds
by calling Process.spawn
.
Pipes the stdout
from each child to the stdin
of the next child, or, for the first child, pipes the caller’s stdout
to the child’s stdin
.
The method does not wait for child processes to exit, so the caller must do so.
With no block given, returns a 2-element array containing:
The stdin
stream of the first child process.
An array of the wait threads for all of the child processes.
Example:
first_stdin, wait_threads = Open3.pipeline_w('sort', 'cat -n') # => [#<IO:fd 7>, [#<Process::Waiter:0x000055e8de928278 run>, #<Process::Waiter:0x000055e8de923e80 run>]] first_stdin.puts("foo\nbar\nbaz") first_stdin.close # Send EOF to sort. wait_threads.each do |wait_thread| wait_thread.join end
Output:
1 bar 2 baz 3 foo
With a block given, calls the block with the stdin
stream of the first child process, and an array of the wait processes:
Open3.pipeline_w('sort', 'cat -n') do |first_stdin, wait_threads| first_stdin.puts("foo\nbar\nbaz") first_stdin.close # Send EOF to sort. wait_threads.each do |wait_thread| wait_thread.join end end
Output:
1 bar 2 baz 3 foo
Like Process.spawn
, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.
If the first argument is a hash, it becomes leading argument env
in each call to Process.spawn
; see Execution Environment.
If the last argument is a hash, it becomes trailing argument options
in each call to Process.spawn
; see Execution Options.
Each remaining argument in cmds
is one of:
A command_line
: a string that begins with a shell reserved word or special built-in, or contains one or more metacharacters.
An exe_path
: the string path to an executable to be called.
An array containing a command_line
or an exe_path
, along with zero or more string arguments for the command.
Basically a wrapper for Process.spawn
that:
Creates a child process for each of the given cmds
by calling Process.spawn
.
Pipes the stdout
from each child to the stdin
of the next child, or, for the last child, to the caller’s stdout
.
Waits for the child processes to exit.
Returns an array of Process::Status
objects (one for each child).
Example:
wait_threads = Open3.pipeline('ls', 'grep R') # => [#<Process::Status: pid 2139200 exit 0>, #<Process::Status: pid 2139202 exit 0>]
Output:
Rakefile README.md
Like Process.spawn
, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.
If the first argument is a hash, it becomes leading argument env
in each call to Process.spawn
; see Execution Environment.
If the last argument is a hash, it becomes trailing argument options
in each call to Process.spawn
‘ see Execution Options.
Each remaining argument in cmds
is one of:
A command_line
: a string that begins with a shell reserved word or special built-in, or contains one or more metacharacters.
An exe_path
: the string path to an executable to be called.
An array containing a command_line
or an exe_path
, along with zero or more string arguments for the command.
Basically a wrapper for Process.spawn
that:
Creates a child process for each of the given cmds
by calling Process.spawn
.
Pipes the stdout
from each child to the stdin
of the next child, or, for the last child, to the caller’s stdout
.
Waits for the child processes to exit.
Returns an array of Process::Status
objects (one for each child).
Example:
wait_threads = Open3.pipeline('ls', 'grep R') # => [#<Process::Status: pid 2139200 exit 0>, #<Process::Status: pid 2139202 exit 0>]
Output:
Rakefile README.md
Like Process.spawn
, this method has potential security vulnerabilities if called with untrusted input; see Command Injection.
If the first argument is a hash, it becomes leading argument env
in each call to Process.spawn
; see Execution Environment.
If the last argument is a hash, it becomes trailing argument options
in each call to Process.spawn
‘ see Execution Options.
Each remaining argument in cmds
is one of:
A command_line
: a string that begins with a shell reserved word or special built-in, or contains one or more metacharacters.
An exe_path
: the string path to an executable to be called.
An array containing a command_line
or an exe_path
, along with zero or more string arguments for the command.
Splits a string into an array of tokens in the same way the UNIX Bourne shell does.
argv = Shellwords.split('here are "two words"') argv #=> ["here", "are", "two words"]
line
must not contain NUL characters because of nature of exec
system call.
Note, however, that this is not a command line parser. Shell metacharacters except for the single and double quotes and backslash are not treated as such.
argv = Shellwords.split('ruby my_prog.rb | less') argv #=> ["ruby", "my_prog.rb", "|", "less"]
String#shellsplit
is a shortcut for this function.
argv = 'here are "two words"'.shellsplit argv #=> ["here", "are", "two words"]