returns match status of CSI/SS3 sequence and matched length
@api private
Does this dependency request match spec
?
NOTE: matches_spec?
matches prerelease versions. See also match?
Calls the block with each repeated permutation of length n
of the elements of self
; each permutation is an Array
; returns self
. The order of the permutations is indeterminate.
When a block and a positive Integer
argument n
are given, calls the block with each n
-tuple repeated permutation of the elements of self
. The number of permutations is self.size**n
.
n
= 1:
a = [0, 1, 2] a.repeated_permutation(1) {|permutation| p permutation }
Output:
[0] [1] [2]
n
= 2:
a.repeated_permutation(2) {|permutation| p permutation }
Output:
[0, 0] [0, 1] [0, 2] [1, 0] [1, 1] [1, 2] [2, 0] [2, 1] [2, 2]
If n
is zero, calls the block once with an empty Array
.
If n
is negative, does not call the block:
a.repeated_permutation(-1) {|permutation| fail 'Cannot happen' }
Returns a new Enumerator
if no block given:
a = [0, 1, 2] a.repeated_permutation(2) # => #<Enumerator: [0, 1, 2]:permutation(2)>
Using Enumerators, it’s convenient to show the permutations and counts for some values of n
:
e = a.repeated_permutation(0) e.size # => 1 e.to_a # => [[]] e = a.repeated_permutation(1) e.size # => 3 e.to_a # => [[0], [1], [2]] e = a.repeated_permutation(2) e.size # => 9 e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]]
Calls the block with each repeated combination of length n
of the elements of self
; each combination is an Array
; returns self
. The order of the combinations is indeterminate.
When a block and a positive Integer
argument n
are given, calls the block with each n
-tuple repeated combination of the elements of self
. The number of combinations is (n+1)(n+2)/2
.
n
= 1:
a = [0, 1, 2] a.repeated_combination(1) {|combination| p combination }
Output:
[0] [1] [2]
n
= 2:
a.repeated_combination(2) {|combination| p combination }
Output:
[0, 0] [0, 1] [0, 2] [1, 1] [1, 2] [2, 2]
If n
is zero, calls the block once with an empty Array
.
If n
is negative, does not call the block:
a.repeated_combination(-1) {|combination| fail 'Cannot happen' }
Returns a new Enumerator
if no block given:
a = [0, 1, 2] a.repeated_combination(2) # => #<Enumerator: [0, 1, 2]:combination(2)>
Using Enumerators, it’s convenient to show the combinations and counts for some values of n
:
e = a.repeated_combination(0) e.size # => 1 e.to_a # => [[]] e = a.repeated_combination(1) e.size # => 3 e.to_a # => [[0], [1], [2]] e = a.repeated_combination(2) e.size # => 6 e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 2]]
Calls the given block with each successive character from self
; returns self
:
'hello'.each_char {|char| print char, ' ' } print "\n" 'тест'.each_char {|char| print char, ' ' } print "\n" 'こんにちは'.each_char {|char| print char, ' ' } print "\n"
Output:
h e l l o т е с т こ ん に ち は
Returns an enumerator if no block is given.
Like Dir.foreach
, except that entries '.'
and '..'
are not included.
Calls the block with each entry name in self
except '.'
and '..'
:
dir = Dir.new('/example') dir.each_child {|entry_name| p entry_name }
Output:
"config.h" "lib" "main.rb"
If no block is given, returns an enumerator.
Returns the locale charmap name. It returns nil if no appropriate information.
Debian GNU/Linux LANG=C Encoding.locale_charmap #=> "ANSI_X3.4-1968" LANG=ja_JP.EUC-JP Encoding.locale_charmap #=> "EUC-JP" SunOS 5 LANG=C Encoding.locale_charmap #=> "646" LANG=ja Encoding.locale_charmap #=> "eucJP"
The result is highly platform dependent. So Encoding.find(Encoding.locale_charmap)
may cause an error. If you need some encoding object even for unknown locale, Encoding.find
(“locale”) can be used.
Calls the given block with each character in the stream; returns self
. See Character IO.
f = File.new('t.rus') a = [] f.each_char {|c| a << c.ord } a # => [1090, 1077, 1089, 1090] f.close
Returns an Enumerator
if no block is given.
Related: IO#each_byte
, IO#each_codepoint
.
Returns the object for which the receiver is the singleton class.
Raises an TypeError
if the class is not a singleton class.
class Foo; end Foo.singleton_class.attached_object #=> Foo Foo.attached_object #=> TypeError: `Foo' is not a singleton class Foo.new.singleton_class.attached_object #=> #<Foo:0x000000010491a370> TrueClass.attached_object #=> TypeError: `TrueClass' is not a singleton class NilClass.attached_object #=> TypeError: `NilClass' is not a singleton class
Iterates over the children of the directory (files and subdirectories, not recursive).
It yields Pathname
object for each child.
By default, the yielded pathnames will have enough information to access the files.
If you set with_directory
to false
, then the returned pathnames will contain the filename only.
Pathname("/usr/local").each_child {|f| p f } #=> #<Pathname:/usr/local/share> # #<Pathname:/usr/local/bin> # #<Pathname:/usr/local/games> # #<Pathname:/usr/local/lib> # #<Pathname:/usr/local/include> # #<Pathname:/usr/local/sbin> # #<Pathname:/usr/local/src> # #<Pathname:/usr/local/man> Pathname("/usr/local").each_child(false) {|f| p f } #=> #<Pathname:share> # #<Pathname:bin> # #<Pathname:games> # #<Pathname:lib> # #<Pathname:include> # #<Pathname:sbin> # #<Pathname:src> # #<Pathname:man>
Note that the results never contain the entries .
and ..
in the directory because they are not children.
With a block given, calls the block with each remaining character in the stream; see Character IO.
With no block given, returns an enumerator.
Returns a new Array
containing the values associated with the given keys *keys:
h = {foo: 0, bar: 1, baz: 2} h.fetch_values(:baz, :foo) # => [2, 0]
Returns a new empty Array
if no arguments given.
When a block is given, calls the block with each missing key, treating the block’s return value as the value for that key:
h = {foo: 0, bar: 1, baz: 2} values = h.fetch_values(:bar, :foo, :bad, :bam) {|key| key.to_s} values # => [1, 0, "bad", "bam"]
When no block is given, raises an exception if any given key is not found.
Iterates over each character of each file in ARGF
.
This method allows you to treat the files supplied on the command line as a single file consisting of the concatenation of each named file. After the last character of the first file has been returned, the first character of the second file is returned. The ARGF.filename
method can be used to determine the name of the file in which the current character appears.
If no block is given, an enumerator is returned instead.
This is similar to PrettyPrint::format
but the result has no breaks.
maxwidth
, newline
and genspace
are ignored.
The invocation of breakable
in the block doesn’t break a line and is treated as just an invocation of text
.
Returns an array of flattened objects returned by the block.
With a block given, calls the block with successive elements; returns a flattened array of objects returned by the block:
[0, 1, 2, 3].flat_map {|element| -element } # => [0, -1, -2, -3] [0, 1, 2, 3].flat_map {|element| [element, -element] } # => [0, 0, 1, -1, 2, -2, 3, -3] [[0, 1], [2, 3]].flat_map {|e| e + [100] } # => [0, 1, 100, 2, 3, 100] {foo: 0, bar: 1, baz: 2}.flat_map {|key, value| [key, value] } # => [:foo, 0, :bar, 1, :baz, 2]
With no block given, returns an Enumerator
.
Alias: collect_concat
.
Returns a 2-element array containing the elements for which the block returns minimum and maximum values:
(1..4).minmax_by {|element| -element } # => [4, 1] %w[a b c d].minmax_by {|element| -element.ord } # => ["d", "a"] {foo: 0, bar: 1, baz: 2}.minmax_by {|key, value| -value } # => [[:baz, 2], [:foo, 0]] [].minmax_by {|element| -element } # => [nil, nil]
Returns an Enumerator
if no block is given.
Returns garbage collector generation for the given object
.
class B include ObjectSpace def foo trace_object_allocations do obj = Object.new p "Generation is #{allocation_generation(obj)}" end end end B.new.foo #=> "Generation is 3"
See ::trace_object_allocations
for more information and examples.
How String
Gem paths should be split. Overridable for esoteric platforms.
Generates the Makefile for your extension, passing along any options and preprocessor constants that you may have generated through other methods.
The target
name should correspond the name of the global function name defined within your C extension, minus the Init_
. For example, if your C extension is defined as Init_foo
, then your target would simply be “foo”.
If any “/” characters are present in the target name, only the last name is interpreted as the target name, and the rest are considered toplevel directory names, and the generated Makefile will be altered accordingly to follow that directory structure.
For example, if you pass “test/foo” as a target name, your extension will be installed under the “test” directory. This means that in order to load the file within a Ruby program later, that directory structure will have to be followed, e.g. require 'test/foo'
.
The srcprefix
should be used when your source files are not in the same directory as your build script. This will not only eliminate the need for you to manually copy the source files into the same directory as your build script, but it also sets the proper target_prefix
in the generated Makefile.
Setting the target_prefix
will, in turn, install the generated binary in a directory under your RbConfig::CONFIG['sitearchdir']
that mimics your local filesystem when you run make install
.
For example, given the following file tree:
ext/ extconf.rb test/ foo.c
And given the following code:
create_makefile('test/foo', 'test')
That will set the target_prefix
in the generated Makefile to “test”. That, in turn, will create the following file tree when installed via the make install
command:
/path/to/ruby/sitearchdir/test/foo.so
It is recommended that you use this approach to generate your makefiles, instead of copying files around manually, because some third party libraries may depend on the target_prefix
being set properly.
The srcprefix
argument can be used to override the default source directory, i.e. the current directory. It is included as part of the VPATH
and added to the list of INCFLAGS
.
Returns the contents of this Tms
object as a formatted string, according to a format
string like that passed to Kernel.format
. In addition, format
accepts the following extensions:
%u
Replaced by the user CPU time, as reported by Tms#utime
.
%y
Replaced by the system CPU time, as reported by stime
(Mnemonic: y of “s*y*stem”)
%U
Replaced by the children’s user CPU time, as reported by Tms#cutime
%Y
Replaced by the children’s system CPU time, as reported by Tms#cstime
%t
Replaced by the total CPU time, as reported by Tms#total
%r
Replaced by the elapsed real time, as reported by Tms#real
%n
Replaced by the label string, as reported by Tms#label
(Mnemonic: n of “*n*ame”)
If format
is not given, FORMAT
is used as default value, detailing the user, system and real elapsed time.