Results for: "OptionParser"

No documentation available

Invoked by IO#pwrite or IO::Buffer#pwrite to write length bytes to io at offset from into a specified buffer (see IO::Buffer) at the given offset.

This method is semantically the same as io_write, but it allows to specify the offset to write to and is often better for asynchronous IO on the same file.

The method should be considered experimental.

Invoked by Kernel#sleep and Mutex#sleep and is expected to provide an implementation of sleeping in a non-blocking way. Implementation might register the current fiber in some list of “which fiber wait until what moment”, call Fiber.yield to pass control, and then in close resume the fibers whose wait period has elapsed.

Returns the number of threads waiting on the queue.

Returns the number of threads waiting on the queue.

Returns the discarded bytes when Encoding::InvalidByteSequenceError occurs.

ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
begin
  ec.convert("abc\xA1\xFFdef")
rescue Encoding::InvalidByteSequenceError
  p $!      #=> #<Encoding::InvalidByteSequenceError: "\xA1" followed by "\xFF" on EUC-JP>
  puts $!.error_bytes.dump          #=> "\xA1"
  puts $!.readagain_bytes.dump      #=> "\xFF"
end

Returns true if the invalid byte sequence error is caused by premature end of string.

ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")

begin
  ec.convert("abc\xA1z")
rescue Encoding::InvalidByteSequenceError
  p $!      #=> #<Encoding::InvalidByteSequenceError: "\xA1" followed by "z" on EUC-JP>
  p $!.incomplete_input?    #=> false
end

begin
  ec.convert("abc\xA1")
  ec.finish
rescue Encoding::InvalidByteSequenceError
  p $!      #=> #<Encoding::InvalidByteSequenceError: incomplete "\xA1" on EUC-JP>
  p $!.incomplete_input?    #=> true
end

Returns the corresponding ASCII compatible encoding.

Returns nil if the argument is an ASCII compatible encoding.

“corresponding ASCII compatible encoding” is an ASCII compatible encoding which can represents exactly the same characters as the given ASCII incompatible encoding. So, no conversion undefined error occurs when converting between the two encodings.

Encoding::Converter.asciicompat_encoding("ISO-2022-JP") #=> #<Encoding:stateless-ISO-2022-JP>
Encoding::Converter.asciicompat_encoding("UTF-16BE") #=> #<Encoding:UTF-8>
Encoding::Converter.asciicompat_encoding("UTF-8") #=> nil

Returns an exception object for the last conversion. Returns nil if the last conversion did not produce an error.

“error” means that Encoding::InvalidByteSequenceError and Encoding::UndefinedConversionError for Encoding::Converter#convert and :invalid_byte_sequence, :incomplete_input and :undefined_conversion for Encoding::Converter#primitive_convert.

ec = Encoding::Converter.new("utf-8", "iso-8859-1")
p ec.primitive_convert(src="\xf1abcd", dst="")       #=> :invalid_byte_sequence
p ec.last_error      #=> #<Encoding::InvalidByteSequenceError: "\xF1" followed by "a" on UTF-8>
p ec.primitive_convert(src, dst, nil, 1)             #=> :destination_buffer_full
p ec.last_error      #=> nil

Iterates over keys and values. Note that unlike other collections, each without block isn’t supported.

Consumes size bytes from the buffer

Reads at most maxlen bytes in the non-blocking manner.

When no data can be read without blocking it raises OpenSSL::SSL::SSLError extended by IO::WaitReadable or IO::WaitWritable.

IO::WaitReadable means SSL needs to read internally so read_nonblock should be called again when the underlying IO is readable.

IO::WaitWritable means SSL needs to write internally so read_nonblock should be called again after the underlying IO is writable.

OpenSSL::Buffering#read_nonblock needs two rescue clause as follows:

# emulates blocking read (readpartial).
begin
  result = ssl.read_nonblock(maxlen)
rescue IO::WaitReadable
  IO.select([io])
  retry
rescue IO::WaitWritable
  IO.select(nil, [io])
  retry
end

Note that one reason that read_nonblock writes to the underlying IO is when the peer requests a new TLS/SSL handshake. See openssl the FAQ for more details. www.openssl.org/support/faq.html

By specifying a keyword argument exception to false, you can indicate that read_nonblock should not raise an IO::Wait*able exception, but return the symbol :wait_writable or :wait_readable instead. At EOF, it will return nil instead of raising EOFError.

Writes s in the non-blocking manner.

If there is buffered data, it is flushed first. This may block.

write_nonblock returns number of bytes written to the SSL connection.

When no data can be written without blocking it raises OpenSSL::SSL::SSLError extended by IO::WaitReadable or IO::WaitWritable.

IO::WaitReadable means SSL needs to read internally so write_nonblock should be called again after the underlying IO is readable.

IO::WaitWritable means SSL needs to write internally so write_nonblock should be called again after underlying IO is writable.

So OpenSSL::Buffering#write_nonblock needs two rescue clause as follows.

# emulates blocking write.
begin
  result = ssl.write_nonblock(str)
rescue IO::WaitReadable
  IO.select([io])
  retry
rescue IO::WaitWritable
  IO.select(nil, [io])
  retry
end

Note that one reason that write_nonblock reads from the underlying IO is when the peer requests a new TLS/SSL handshake. See the openssl FAQ for more details. www.openssl.org/support/faq.html

By specifying a keyword argument exception to false, you can indicate that write_nonblock should not raise an IO::Wait*able exception, but return the symbol :wait_writable or :wait_readable instead.

Generates a new key (pair).

If a String is given as the first argument, it generates a new random key for the algorithm specified by the name just as ::generate_parameters does. If an OpenSSL::PKey::PKey is given instead, it generates a new random key for the same algorithm as the key, using the parameters the key contains.

See ::generate_parameters for the details of options and the given block.

Example

pkey_params = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048)
pkey_params.priv_key #=> nil
pkey = OpenSSL::PKey.generate_key(pkey_params)
pkey.priv_key #=> #<OpenSSL::BN 6277...

See IO#write_nonblock

No documentation available
No documentation available
No documentation available

Calls the block with each key/value pair:

res = Net::HTTP.get_response(hostname, '/todos/1')
res.each_header do |key, value|
  p [key, value] if key.start_with?('c')
end

Output:

["content-type", "application/json; charset=utf-8"]
["connection", "keep-alive"]
["cache-control", "max-age=43200"]
["cf-cache-status", "HIT"]
["cf-ray", "771d17e9bc542cf5-ORD"]

Returns an enumerator if no block is given.

Net::HTTPHeader#each is an alias for Net::HTTPHeader#each_header.

No documentation available

Sets the value for field 'Range'; see Range request header:

With argument length:

req = Net::HTTP::Get.new(uri)
req.set_range(100)      # => 100
req['Range']            # => "bytes=0-99"

With arguments offset and length:

req.set_range(100, 100) # => 100...200
req['Range']            # => "bytes=100-199"

With argument range:

req.set_range(100..199) # => 100..199
req['Range']            # => "bytes=100-199"

Net::HTTPHeader#range= is an alias for Net::HTTPHeader#set_range.

Returns the value of field 'Content-Length' as an integer, or nil if there is no such field; see Content-Length request header:

res = Net::HTTP.get_response(hostname, '/nosuch/1')
res.content_length # => 2
res = Net::HTTP.get_response(hostname, '/todos/1')
res.content_length # => nil

Sets the value of field 'Content-Length' to the given numeric; see Content-Length response header:

_uri = uri.dup
hostname = _uri.hostname           # => "jsonplaceholder.typicode.com"
_uri.path = '/posts'               # => "/posts"
req = Net::HTTP::Post.new(_uri)    # => #<Net::HTTP::Post POST>
req.body = '{"title": "foo","body": "bar","userId": 1}'
req.content_length = req.body.size # => 42
req.content_type = 'application/json'
res = Net::HTTP.start(hostname) do |http|
  http.request(req)
end # => #<Net::HTTPCreated 201 Created readbody=true>

Returns a Range object representing the value of field 'Content-Range', or nil if no such field exists; see Content-Range response header:

res = Net::HTTP.get_response(hostname, '/todos/1')
res['Content-Range'] # => nil
res['Content-Range'] = 'bytes 0-499/1000'
res['Content-Range'] # => "bytes 0-499/1000"
res.content_range    # => 0..499

Returns the media type from the value of field 'Content-Type', or nil if no such field exists; see Content-Type response header:

res = Net::HTTP.get_response(hostname, '/todos/1')
res['content-type'] # => "application/json; charset=utf-8"
res.content_type    # => "application/json"
Search took: 7ms  ·  Total Results: 3694