Results for: "pstore"

Create a new ConstantPathOrWriteNode node.

Create a new GlobalVariableOperatorWriteNode node.

Create a new InstanceVariableOrWriteNode node.

Create a new LocalVariableOperatorWriteNode node.

$+ ^^

Foo += bar ^^^^^^^^^^^

def foo(**bar); end

^^^^^

def foo(**); end

^^

def foo(bar:); end

^^^^

$+ ^^

Foo += bar ^^^^^^^^^^^

def foo(**bar); end

^^^^^

def foo(**); end

^^

def foo(bar:); end

^^^^

Returns self.

When a block given, iterates backwards over the elements of self, passing, in reverse order, each element to the block; returns self:

a = []
[0, 1, 2].reverse_each {|element| a.push(element) }
a # => [2, 1, 0]

Allows the array to be modified during iteration:

a = ['a', 'b', 'c']
a.reverse_each {|element| a.clear if element.start_with?('b') }
a # => []

When no block given, returns a new Enumerator.

Related: see Methods for Iterating.

With a block given, sorts the elements of self in place; returns self.

Calls the block with each successive element; sorts elements based on the values returned from the block:

a = ['aaaa', 'bbb', 'cc', 'd']
a.sort_by! {|element| element.size }
a # => ["d", "cc", "bbb", "aaaa"]

For duplicate values returned by the block, the ordering is indeterminate, and may be unstable.

With no block given, returns a new Enumerator.

Related: see Methods for Assigning.

With a block given, calls the block with each repeated permutation of length size of the elements of self; each permutation is an array; returns self. The order of the permutations is indeterminate.

If a positive integer argument size is given, calls the block with each size-tuple repeated permutation of the elements of self. The number of permutations is self.size**size.

Examples:

If size is zero, calls the block once with an empty array.

If size is negative, does not call the block:

[0, 1, 2].repeated_permutation(-1) {|permutation| fail 'Cannot happen' }

With no block given, returns a new Enumerator.

Related: see Methods for Combining.

With a block given, calls the block with each repeated combination of length size of the elements of self; each combination is an array; returns self. The order of the combinations is indeterminate.

If a positive integer argument size is given, calls the block with each size-tuple repeated combination of the elements of self. The number of combinations is (size+1)(size+2)/2.

Examples:

If size is zero, calls the block once with an empty array.

If size is negative, does not call the block:

[0, 1, 2].repeated_combination(-1) {|combination| fail 'Cannot happen' }

With no block given, returns a new Enumerator.

Related: see Methods for Combining.

Casts an Integer as an OpenSSL::BN

See ‘man bn` for more info.

Returns self (which is already an Integer).

Imports methods from modules. Unlike Module#include, Refinement#import_methods copies methods and adds them into the refinement, so the refinement is activated in the imported methods.

Note that due to method copying, only methods defined in Ruby code can be imported.

module StrUtils
  def indent(level)
    ' ' * level + self
  end
end

module M
  refine String do
    import_methods StrUtils
  end
end

using M
"foo".indent(3)
#=> "   foo"

module M
  refine String do
    import_methods Enumerable
    # Can't import method which is not defined with Ruby code: Enumerable#drop
  end
end

See as_json.

Returns a JSON string representing self:

require 'json/add/complex'
puts Complex(2).to_json
puts Complex(2.0, 4).to_json

Output:

{"json_class":"Complex","r":2,"i":0}
{"json_class":"Complex","r":2.0,"i":4}

Returns self as an integer; converts using method to_i in the derived class.

Of the Core and Standard Library classes, only Rational and Complex use this implementation.

Examples:

Rational(1, 2).to_int # => 0
Rational(2, 1).to_int # => 2
Complex(2, 0).to_int  # => 2
Complex(2, 1).to_int  # Raises RangeError (non-zero imaginary part)

Returns an array of the grapheme clusters in self (see Unicode Grapheme Cluster Boundaries):

s = "\u0061\u0308-pqr-\u0062\u0308-xyz-\u0063\u0308" # => "ä-pqr-b̈-xyz-c̈"
s.grapheme_clusters
# => ["ä", "-", "p", "q", "r", "-", "b̈", "-", "x", "y", "z", "-", "c̈"]

Returns the Symbol corresponding to str, creating the symbol if it did not previously exist. See Symbol#id2name.

"Koala".intern         #=> :Koala
s = 'cat'.to_sym       #=> :cat
s == :cat              #=> true
s = '@cat'.to_sym      #=> :@cat
s == :@cat             #=> true

This can also be used to create symbols that cannot be represented using the :xxx notation.

'cat and dog'.to_sym   #=> :"cat and dog"
Search took: 5ms  ·  Total Results: 4418