Class

A Complex object houses a pair of values, given when the object is created as either rectangular coordinates or polar coordinates.

Rectangular Coordinates

The rectangular coordinates of a complex number are called the real and imaginary parts; see Complex number definition.

You can create a Complex object from rectangular coordinates with:

Note that each of the stored parts may be a an instance one of the classes Complex, Float, Integer, or Rational; they may be retrieved:

The corresponding (computed) polar values may be retrieved:

Polar Coordinates

The polar coordinates of a complex number are called the absolute and argument parts; see Complex polar plane.

In this class, the argument part in expressed radians (not degrees).

You can create a Complex object from polar coordinates with:

Note that each of the stored parts may be a an instance one of the classes Complex, Float, Integer, or Rational; they may be retrieved:

The corresponding (computed) rectangular values may be retrieved:

What’s Here

First, what’s elsewhere:

  • Class Complex inherits (directly or indirectly) from classes Numeric and Object.

  • Includes (indirectly) module Comparable.

Here, class Complex has methods for:

Creating Complex Objects

  • ::polar: Returns a new Complex object based on given polar coordinates.

  • ::rect (and its alias ::rectangular): Returns a new Complex object based on given rectangular coordinates.

Querying

  • abs (and its alias magnitude): Returns the absolute value for self.

  • arg (and its aliases angle and phase): Returns the argument (angle) for self in radians.

  • denominator: Returns the denominator of self.

  • finite?: Returns whether both self.real and self.image are finite.

  • hash: Returns the integer hash value for self.

  • imag (and its alias imaginary): Returns the imaginary value for self.

  • infinite?: Returns whether self.real or self.image is infinite.

  • numerator: Returns the numerator of self.

  • polar: Returns the array [self.abs, self.arg].

  • inspect: Returns a string representation of self.

  • real: Returns the real value for self.

  • real?: Returns false; for compatibility with Numeric#real?.

  • rect (and its alias rectangular): Returns the array [self.real, self.imag].

Comparing

  • <=>: Returns whether self is less than, equal to, or greater than the given argument.

  • ==: Returns whether self is equal to the given argument.

Converting

  • rationalize: Returns a Rational object whose value is exactly or approximately equivalent to that of self.real.

  • to_c: Returns self.

  • to_d: Returns the value as a BigDecimal object.

  • to_f: Returns the value of self.real as a Float, if possible.

  • to_i: Returns the value of self.real as an Integer, if possible.

  • to_r: Returns the value of self.real as a Rational, if possible.

  • to_s: Returns a string representation of self.

Performing Complex Arithmetic

  • *: Returns the product of self and the given numeric.

  • **: Returns self raised to power of the given numeric.

  • +: Returns the sum of self and the given numeric.

  • -: Returns the difference of self and the given numeric.

  • -@: Returns the negation of self.

  • /: Returns the quotient of self and the given numeric.

  • abs2: Returns square of the absolute value (magnitude) for self.

  • conj (and its alias conjugate): Returns the conjugate of self.

  • fdiv: Returns Complex.rect(self.real/numeric, self.imag/numeric).

Working with JSON

  • ::json_create: Returns a new Complex object, deserialized from the given serialized hash.

  • as_json: Returns a serialized hash constructed from self.

  • to_json: Returns a JSON string representing self.

These methods are provided by the JSON gem. To make these methods available:

require 'json/add/complex'
Constants

I

Equivalent to Complex.rect(0, 1):

Complex::I # => (0+1i)
Class Methods

See as_json.

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational. Argument arg is given in radians; see Polar Coordinates:

Complex.polar(3)        # => (3+0i)
Complex.polar(3, 2.0)   # => (-1.2484405096414273+2.727892280477045i)
Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i)

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:

Complex.rect(3)             # => (3+0i)
Complex.rect(3, Math::PI)   # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)

Complex.rectangular is an alias for Complex.rect.

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:

Complex.rect(3)             # => (3+0i)
Complex.rect(3, Math::PI)   # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)

Complex.rectangular is an alias for Complex.rect.

Instance Methods

Returns the product of self and numeric:

Complex.rect(2, 3)  * Complex.rect(2, 3)  # => (-5+12i)
Complex.rect(900)   * Complex.rect(1)     # => (900+0i)
Complex.rect(-2, 9) * Complex.rect(-9, 2) # => (0-85i)
Complex.rect(9, 8)  * 4                   # => (36+32i)
Complex.rect(20, 9) * 9.8                 # => (196.0+88.2i)

Returns self raised to power numeric:

Complex.rect(0, 1) ** 2            # => (-1+0i)
Complex.rect(-8) ** Rational(1, 3) # => (1.0000000000000002+1.7320508075688772i)

Returns the sum of self and numeric:

Complex.rect(2, 3)  + Complex.rect(2, 3)  # => (4+6i)
Complex.rect(900)   + Complex.rect(1)     # => (901+0i)
Complex.rect(-2, 9) + Complex.rect(-9, 2) # => (-11+11i)
Complex.rect(9, 8)  + 4                   # => (13+8i)
Complex.rect(20, 9) + 9.8                 # => (29.8+9i)

Returns the difference of self and numeric:

Complex.rect(2, 3)  - Complex.rect(2, 3)  # => (0+0i)
Complex.rect(900)   - Complex.rect(1)     # => (899+0i)
Complex.rect(-2, 9) - Complex.rect(-9, 2) # => (7+7i)
Complex.rect(9, 8)  - 4                   # => (5+8i)
Complex.rect(20, 9) - 9.8                 # => (10.2+9i)

Returns the negation of self, which is the negation of each of its parts:

-Complex.rect(1, 2)   # => (-1-2i)
-Complex.rect(-1, -2) # => (1+2i)

Returns the quotient of self and numeric:

Complex.rect(2, 3)  / Complex.rect(2, 3)  # => (1+0i)
Complex.rect(900)   / Complex.rect(1)     # => (900+0i)
Complex.rect(-2, 9) / Complex.rect(-9, 2) # => ((36/85)-(77/85)*i)
Complex.rect(9, 8)  / 4                   # => ((9/4)+2i)
Complex.rect(20, 9) / 9.8                 # => (2.0408163265306123+0.9183673469387754i)

Returns:

  • self.real <=> object.real if both of the following are true:

    • self.imag == 0.

    • object.imag == 0. # Always true if object is numeric but not complex.

  • nil otherwise.

Examples:

Complex.rect(2) <=> 3                  # => -1
Complex.rect(2) <=> 2                  # => 0
Complex.rect(2) <=> 1                  # => 1
Complex.rect(2, 1) <=> 1               # => nil # self.imag not zero.
Complex.rect(1) <=> Complex.rect(1, 1) # => nil # object.imag not zero.
Complex.rect(1) <=> 'Foo'              # => nil # object.imag not defined.

Returns true if self.real == object.real and self.imag == object.imag:

Complex.rect(2, 3)  == Complex.rect(2.0, 3.0) # => true

Returns the absolute value (magnitude) for self; see polar coordinates:

Complex.polar(-1, 0).abs # => 1.0

If self was created with rectangular coordinates, the returned value is computed, and may be inexact:

Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2.

Returns square of the absolute value (magnitude) for self; see polar coordinates:

Complex.polar(2, 2).abs2 # => 4.0

If self was created with rectangular coordinates, the returned value is computed, and may be inexact:

Complex.rectangular(1.0/3, 1.0/3).abs2 # => 0.2222222222222222
An alias for arg

Returns the argument (angle) for self in radians; see polar coordinates:

Complex.polar(3, Math::PI/2).arg  # => 1.57079632679489660

If self was created with rectangular coordinates, the returned value is computed, and may be inexact:

Complex.polar(1, 1.0/3).arg # => 0.33333333333333326

Methods Complex#as_json and Complex.json_create may be used to serialize and deserialize a Complex object; see Marshal.

Method Complex#as_json serializes self, returning a 2-element hash representing self:

require 'json/add/complex'
x = Complex(2).as_json      # => {"json_class"=>"Complex", "r"=>2, "i"=>0}
y = Complex(2.0, 4).as_json # => {"json_class"=>"Complex", "r"=>2.0, "i"=>4}

Method JSON.create deserializes such a hash, returning a Complex object:

Complex.json_create(x) # => (2+0i)
Complex.json_create(y) # => (2.0+4i)

Returns the conjugate of self, Complex.rect(self.imag, self.real):

Complex.rect(1, 2).conj # => (1-2i)

Returns the denominator of self, which is the least common multiple of self.real.denominator and self.imag.denominator:

Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6

Note that n.denominator of a non-rational numeric is 1.

Related: Complex#numerator.

Returns Complex.rect(self.real/numeric, self.imag/numeric):

Complex.rect(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)

Returns true if both self.real.finite? and self.imag.finite? are true, false otherwise:

Complex.rect(1, 1).finite?               # => true
Complex.rect(Float::INFINITY, 0).finite? # => false

Related: Numeric#finite?, Float#finite?.

Returns the integer hash value for self.

Two Complex objects created from the same values will have the same hash value (and will compare using eql?):

Complex.rect(1, 2).hash == Complex.rect(1, 2).hash # => true

Returns the imaginary value for self:

Complex.rect(7).imag     # => 0
Complex.rect(9, -4).imag # => -4

If self was created with polar coordinates, the returned value is computed, and may be inexact:

Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2.

Returns 1 if either self.real.infinite? or self.imag.infinite? is true, nil otherwise:

Complex.rect(Float::INFINITY, 0).infinite? # => 1
Complex.rect(1, 1).infinite?               # => nil

Related: Numeric#infinite?, Float#infinite?.

Returns a string representation of self:

Complex.rect(2).inspect                      # => "(2+0i)"
Complex.rect(-8, 6).inspect                  # => "(-8+6i)"
Complex.rect(0, Rational(1, 2)).inspect      # => "(0+(1/2)*i)"
Complex.rect(0, Float::INFINITY).inspect     # => "(0+Infinity*i)"
Complex.rect(Float::NAN, Float::NAN).inspect # => "(NaN+NaN*i)"
An alias for abs

Returns the Complex object created from the numerators of the real and imaginary parts of self, after converting each part to the lowest common denominator of the two:

c = Complex.rect(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i)
c.numerator                                      # => (8+9i)

In this example, the lowest common denominator of the two parts is 12; the two converted parts may be thought of as Rational(8, 12) and Rational(9, 12), whose numerators, respectively, are 8 and 9; so the returned value of c.numerator is Complex.rect(8, 9).

Related: Complex#denominator.

An alias for arg

Returns the array [self.abs, self.arg]:

Complex.polar(1, 2).polar # => [1.0, 2.0]

See Polar Coordinates.

If self was created with rectangular coordinates, the returned value is computed, and may be inexact:

Complex.rect(1, 1).polar # => [1.4142135623730951, 0.7853981633974483]

Returns the quotient of self and numeric:

Complex.rect(2, 3)  / Complex.rect(2, 3)  # => (1+0i)
Complex.rect(900)   / Complex.rect(1)     # => (900+0i)
Complex.rect(-2, 9) / Complex.rect(-9, 2) # => ((36/85)-(77/85)*i)
Complex.rect(9, 8)  / 4                   # => ((9/4)+2i)
Complex.rect(20, 9) / 9.8                 # => (2.0408163265306123+0.9183673469387754i)

Returns a Rational object whose value is exactly or approximately equivalent to that of self.real.

With no argument epsilon given, returns a Rational object whose value is exactly equal to that of self.real.rationalize:

Complex.rect(1, 0).rationalize              # => (1/1)
Complex.rect(1, Rational(0, 1)).rationalize # => (1/1)
Complex.rect(3.14159, 0).rationalize        # => (314159/100000)

With argument epsilon given, returns a Rational object whose value is exactly or approximately equal to that of self.real to the given precision:

Complex.rect(3.14159, 0).rationalize(0.1)          # => (16/5)
Complex.rect(3.14159, 0).rationalize(0.01)         # => (22/7)
Complex.rect(3.14159, 0).rationalize(0.001)        # => (201/64)
Complex.rect(3.14159, 0).rationalize(0.0001)       # => (333/106)
Complex.rect(3.14159, 0).rationalize(0.00001)      # => (355/113)
Complex.rect(3.14159, 0).rationalize(0.000001)     # => (7433/2366)
Complex.rect(3.14159, 0).rationalize(0.0000001)    # => (9208/2931)
Complex.rect(3.14159, 0).rationalize(0.00000001)   # => (47460/15107)
Complex.rect(3.14159, 0).rationalize(0.000000001)  # => (76149/24239)
Complex.rect(3.14159, 0).rationalize(0.0000000001) # => (314159/100000)
Complex.rect(3.14159, 0).rationalize(0.0)          # => (3537115888337719/1125899906842624)

Related: Complex#to_r.

Returns the real value for self:

Complex.rect(7).real     # => 7
Complex.rect(9, -4).real # => 9

If self was created with polar coordinates, the returned value is computed, and may be inexact:

Complex.polar(1, Math::PI/4).real # => 0.7071067811865476 # Square root of 2.

Returns false; for compatibility with Numeric#real?.

Returns the array [self.real, self.imag]:

Complex.rect(1, 2).rect # => [1, 2]

See Rectangular Coordinates.

If self was created with polar coordinates, the returned value is computed, and may be inexact:

Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]

Complex#rectangular is an alias for Complex#rect.

Returns self.

Returns the value of self.real as a Float, if possible:

Complex.rect(1, 0).to_f              # => 1.0
Complex.rect(1, Rational(0, 1)).to_f # => 1.0

Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)).

Returns the value of self.real as an Integer, if possible:

Complex.rect(1, 0).to_i              # => 1
Complex.rect(1, Rational(0, 1)).to_i # => 1

Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)).

Returns a JSON string representing self:

require 'json/add/complex'
puts Complex(2).to_json
puts Complex(2.0, 4).to_json

Output:

{"json_class":"Complex","r":2,"i":0}
{"json_class":"Complex","r":2.0,"i":4}

Returns the value of self.real as a Rational, if possible:

Complex.rect(1, 0).to_r              # => (1/1)
Complex.rect(1, Rational(0, 1)).to_r # => (1/1)
Complex.rect(1, 0.0).to_r            # => (1/1)

Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)) and self.imag.to_r is not exactly zero.

Related: Complex#rationalize.

Returns a string representation of self:

Complex.rect(2).to_s                      # => "2+0i"
Complex.rect(-8, 6).to_s                  # => "-8+6i"
Complex.rect(0, Rational(1, 2)).to_s      # => "0+1/2i"
Complex.rect(0, Float::INFINITY).to_s     # => "0+Infinity*i"
Complex.rect(Float::NAN, Float::NAN).to_s # => "NaN+NaN*i"