Results for: "remove_const"

No documentation available

Continuation objects are generated by Kernel#callcc, after having +require+d continuation. They hold a return address and execution context, allowing a nonlocal return to the end of the callcc block from anywhere within a program. Continuations are somewhat analogous to a structured version of C’s setjmp/longjmp (although they contain more state, so you might consider them closer to threads).

For instance:

require "continuation"
arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
callcc{|cc| $cc = cc}
puts(message = arr.shift)
$cc.call unless message =~ /Max/

produces:

Freddie
Herbie
Ron
Max

Also you can call callcc in other methods:

require "continuation"

def g
  arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
  cc = callcc { |cc| cc }
  puts arr.shift
  return cc, arr.size
end

def f
  c, size = g
  c.call(c) if size > 1
end

f

This (somewhat contrived) example allows the inner loop to abandon processing early:

require "continuation"
callcc {|cont|
  for i in 0..4
    print "#{i}: "
    for j in i*5...(i+1)*5
      cont.call() if j == 17
      printf "%3d", j
    end
  end
}
puts

produces:

0:   0  1  2  3  4
1:   5  6  7  8  9
2:  10 11 12 13 14
3:  15 16
No documentation available

Raised when memory allocation fails.

Raised to stop the iteration, in particular by Enumerator#next. It is rescued by Kernel#loop.

loop do
  puts "Hello"
  raise StopIteration
  puts "World"
end
puts "Done!"

produces:

Hello
Done!

An OpenStruct is a data structure, similar to a Hash, that allows the definition of arbitrary attributes with their accompanying values. This is accomplished by using Ruby’s metaprogramming to define methods on the class itself.

Examples

require "ostruct"

person = OpenStruct.new
person.name = "John Smith"
person.age  = 70

person.name      # => "John Smith"
person.age       # => 70
person.address   # => nil

An OpenStruct employs a Hash internally to store the attributes and values and can even be initialized with one:

australia = OpenStruct.new(:country => "Australia", :capital => "Canberra")
  # => #<OpenStruct country="Australia", capital="Canberra">

Hash keys with spaces or characters that could normally not be used for method calls (e.g. ()[]*) will not be immediately available on the OpenStruct object as a method for retrieval or assignment, but can still be reached through the Object#send method or using [].

measurements = OpenStruct.new("length (in inches)" => 24)
measurements[:"length (in inches)"]       # => 24
measurements.send("length (in inches)")   # => 24

message = OpenStruct.new(:queued? => true)
message.queued?                           # => true
message.send("queued?=", false)
message.queued?                           # => false

Removing the presence of an attribute requires the execution of the delete_field method as setting the property value to nil will not remove the attribute.

first_pet  = OpenStruct.new(:name => "Rowdy", :owner => "John Smith")
second_pet = OpenStruct.new(:name => "Rowdy")

first_pet.owner = nil
first_pet                 # => #<OpenStruct name="Rowdy", owner=nil>
first_pet == second_pet   # => false

first_pet.delete_field(:owner)
first_pet                 # => #<OpenStruct name="Rowdy">
first_pet == second_pet   # => true

Ractor compatibility: A frozen OpenStruct with shareable values is itself shareable.

Caveats

An OpenStruct utilizes Ruby’s method lookup structure to find and define the necessary methods for properties. This is accomplished through the methods method_missing and define_singleton_method.

This should be a consideration if there is a concern about the performance of the objects that are created, as there is much more overhead in the setting of these properties compared to using a Hash or a Struct. Creating an open struct from a small Hash and accessing a few of the entries can be 200 times slower than accessing the hash directly.

This is a potential security issue; building OpenStruct from untrusted user data (e.g. JSON web request) may be susceptible to a “symbol denial of service” attack since the keys create methods and names of methods are never garbage collected.

This may also be the source of incompatibilities between Ruby versions:

o = OpenStruct.new
o.then # => nil in Ruby < 2.6, enumerator for Ruby >= 2.6

Builtin methods may be overwritten this way, which may be a source of bugs or security issues:

o = OpenStruct.new
o.methods # => [:to_h, :marshal_load, :marshal_dump, :each_pair, ...
o.methods = [:foo, :bar]
o.methods # => [:foo, :bar]

To help remedy clashes, OpenStruct uses only protected/private methods ending with ! and defines aliases for builtin public methods by adding a !:

o = OpenStruct.new(make: 'Bentley', class: :luxury)
o.class # => :luxury
o.class! # => OpenStruct

It is recommended (but not enforced) to not use fields ending in !; Note that a subclass’ methods may not be overwritten, nor can OpenStruct’s own methods ending with !.

For all these reasons, consider not using OpenStruct at all.

No documentation available
No documentation available

An error class raised when dynamic parts are found while computing a constant path’s full name. For example: Foo::Bar::Baz -> does not raise because all parts of the constant path are simple constants var::Bar::Baz -> raises because the first part of the constant path is a local variable

An error class raised when missing nodes are found while computing a constant path’s full name. For example:

Foo

-> raises because the constant path is missing the last part

Response class for Found responses (status code 302).

The Found response indicates that the client should look at (browse to) another URL.

References:

Represents reading a numbered reference to a capture in the previous match.

$1
^^

Cleared reference exception

Response class for Moved Permanently responses (status code 301).

The Moved Permanently response indicates that links or records returning this response should be updated to use the given URL.

References:

Response class for Temporary Redirect responses (status code 307).

The request should be repeated with another URI; however, future requests should still use the original URI.

References:

Represents reading a reference to a field in the previous match.

$'
^^

Represents an expression modified with a rescue.

foo rescue nil
^^^^^^^^^^^^^^
No documentation available

Signals that a remote operation cannot be conducted, probably due to not being connected (or just not finding host).

RemoteFetcher handles the details of fetching gems and gem information from a remote source.

A Requirement is a set of one or more version restrictions. It supports a few (=, !=, >, <, >=, <=, ~>) different restriction operators.

See Gem::Version for a description on how versions and requirements work together in RubyGems.

Raised on attempt to Ractor#take if there was an uncaught exception in the Ractor. Its cause will contain the original exception, and ractor is the original ractor it was raised in.

r = Ractor.new { raise "Something weird happened" }

begin
  r.take
rescue => e
  p e             # => #<Ractor::RemoteError: thrown by remote Ractor.>
  p e.ractor == r # => true
  p e.cause       # => #<RuntimeError: Something weird happened>
end

Raised on an attempt to access an object which was moved in Ractor#send or Ractor.yield.

r = Ractor.new { sleep }

ary = [1, 2, 3]
r.send(ary, move: true)
ary.inspect
# Ractor::MovedError (can not send any methods to a moved object)

A special object which replaces any value that was moved to another ractor in Ractor#send or Ractor.yield. Any attempt to access the object results in Ractor::MovedError.

r = Ractor.new { receive }

ary = [1, 2, 3]
r.send(ary, move: true)
p Ractor::MovedObject === ary
# => true
ary.inspect
# Ractor::MovedError (can not send any methods to a moved object)

The InstructionSequence class represents a compiled sequence of instructions for the Virtual Machine used in MRI. Not all implementations of Ruby may implement this class, and for the implementations that implement it, the methods defined and behavior of the methods can change in any version.

With it, you can get a handle to the instructions that make up a method or a proc, compile strings of Ruby code down to VM instructions, and disassemble instruction sequences to strings for easy inspection. It is mostly useful if you want to learn how YARV works, but it also lets you control various settings for the Ruby iseq compiler.

You can find the source for the VM instructions in insns.def in the Ruby source.

The instruction sequence results will almost certainly change as Ruby changes, so example output in this documentation may be different from what you see.

Of course, this class is MRI specific.

Search took: 4ms  ·  Total Results: 5438