Dispatch enter and leave events for ConstantOperatorWriteNode
nodes and continue walking the tree.
Dispatch enter and leave events for ConstantPathWriteNode
nodes and continue walking the tree.
Dispatch enter and leave events for InstanceVariableTargetNode
nodes and continue walking the tree.
Inspect a InstanceVariableTargetNode
node.
Create a new ConstantPathAndWriteNode
node.
Create a new ConstantPathOrWriteNode
node.
Create a new InstanceVariableOperatorWriteNode
node.
Create a new InterpolatedMatchLastLineNode
node.
Foo::Bar, = baz ^^^^^^^^
Foo::Bar, = baz ^^^^^^^^
Returns elements from self
in a new array; does not modify self
.
The objects included in the returned array are the elements of self
selected by the given specifiers
, each of which must be a numeric index or a Range
.
In brief:
a = ['a', 'b', 'c', 'd'] # Index specifiers. a.values_at(2, 0, 2, 0) # => ["c", "a", "c", "a"] # May repeat. a.values_at(-4, -3, -2, -1) # => ["a", "b", "c", "d"] # Counts backwards if negative. a.values_at(-50, 50) # => [nil, nil] # Outside of self. # Range specifiers. a.values_at(1..3) # => ["b", "c", "d"] # From range.begin to range.end. a.values_at(1...3) # => ["b", "c"] # End excluded. a.values_at(3..1) # => [] # No such elements. a.values_at(-3..3) # => ["b", "c", "d"] # Negative range.begin counts backwards. a.values_at(-50..3) # Raises RangeError. a.values_at(1..-2) # => ["b", "c"] # Negative range.end counts backwards. a.values_at(1..-50) # => [] # No such elements. # Mixture of specifiers. a.values_at(2..3, 3, 0..1, 0) # => ["c", "d", "d", "a", "b", "a"]
With no specifiers
given, returns a new empty array:
a = ['a', 'b', 'c', 'd'] a.values_at # => []
For each numeric specifier index
, includes an element:
For each non-negative numeric specifier index
that is in-range (less than self.size
), includes the element at offset index
:
a.values_at(0, 2) # => ["a", "c"] a.values_at(0.1, 2.9) # => ["a", "c"]
For each negative numeric index
that is in-range (greater than or equal to - self.size
), counts backwards from the end of self
:
a.values_at(-1, -4) # => ["d", "a"]
The given indexes may be in any order, and may repeat:
a.values_at(2, 0, 1, 0, 2) # => ["c", "a", "b", "a", "c"]
For each index
that is out-of-range, includes nil
:
a.values_at(4, -5) # => [nil, nil]
For each Range
specifier range
, includes elements according to range.begin
and range.end
:
If both range.begin
and range.end
are non-negative and in-range (less than self.size
), includes elements from index range.begin
through range.end - 1
(if range.exclude_end?
), or through range.end
(otherwise):
a.values_at(1..2) # => ["b", "c"] a.values_at(1...2) # => ["b"]
If range.begin
is negative and in-range (greater than or equal to - self.size
), counts backwards from the end of self
:
a.values_at(-2..3) # => ["c", "d"]
If range.begin
is negative and out-of-range, raises an exception:
a.values_at(-5..3) # Raises RangeError.
If range.end
is positive and out-of-range, extends the returned array with nil
elements:
a.values_at(1..5) # => ["b", "c", "d", nil, nil]
If range.end
is negative and in-range, counts backwards from the end of self
:
a.values_at(1..-2) # => ["b", "c"]
If range.end
is negative and out-of-range, returns an empty array:
a.values_at(1..-5) # => []
The given ranges may be in any order and may repeat:
a.values_at(2..3, 0..1, 2..3) # => ["c", "d", "a", "b", "c", "d"]
The given specifiers may be any mixture of indexes and ranges:
a.values_at(3, 1..2, 0, 2..3) # => ["d", "b", "c", "a", "c", "d"]
Related: see Methods for Fetching.
Removes the element of self
at the given index
, which must be an integer-convertible object.
When index
is non-negative, deletes the element at offset index
:
a = [:foo, 'bar', 2] a.delete_at(1) # => "bar" a # => [:foo, 2]
When index
is negative, counts backward from the end of the array:
a = [:foo, 'bar', 2] a.delete_at(-2) # => "bar" a # => [:foo, 2]
When index
is out of range, returns nil
.
a = [:foo, 'bar', 2] a.delete_at(3) # => nil a.delete_at(-4) # => nil
Related: see Methods for Deleting.
With a block given, calls the block with each successive element of self
; stops iterating if the block returns false
or nil
; returns a new array containing those elements for which the block returned a truthy value:
a = [0, 1, 2, 3, 4, 5] a.take_while {|element| element < 3 } # => [0, 1, 2] a.take_while {|element| true } # => [0, 1, 2, 3, 4, 5] a.take_while {|element| false } # => []
With no block given, returns a new Enumerator
.
Does not modify self
.
Related: see Methods for Fetching.
Returns whether self
starts with any of the given string_or_regexp
.
Matches patterns against the beginning of self
. For each given string_or_regexp
, the pattern is:
string_or_regexp
itself, if it is a Regexp
.
Regexp.quote(string_or_regexp)
, if string_or_regexp
is a string.
Returns true
if any pattern matches the beginning, false
otherwise:
'hello'.start_with?('hell') # => true 'hello'.start_with?(/H/i) # => true 'hello'.start_with?('heaven', 'hell') # => true 'hello'.start_with?('heaven', 'paradise') # => false 'тест'.start_with?('т') # => true 'こんにちは'.start_with?('こ') # => true
Related: String#end_with?
.
Returns the next-larger representable Float.
These examples show the internally stored values (64-bit hexadecimal) for each Float f
and for the corresponding f.next_float
:
f = 0.0 # 0x0000000000000000 f.next_float # 0x0000000000000001 f = 0.01 # 0x3f847ae147ae147b f.next_float # 0x3f847ae147ae147c
In the remaining examples here, the output is shown in the usual way (result to_s
):
0.01.next_float # => 0.010000000000000002 1.0.next_float # => 1.0000000000000002 100.0.next_float # => 100.00000000000001 f = 0.01 (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }
Output:
0 0x1.47ae147ae147bp-7 0.01 1 0x1.47ae147ae147cp-7 0.010000000000000002 2 0x1.47ae147ae147dp-7 0.010000000000000004 3 0x1.47ae147ae147ep-7 0.010000000000000005 f = 0.0; 100.times { f += 0.1 } f # => 9.99999999999998 # should be 10.0 in the ideal world. 10-f # => 1.9539925233402755e-14 # the floating point error. 10.0.next_float-10 # => 1.7763568394002505e-15 # 1 ulp (unit in the last place). (10-f)/(10.0.next_float-10) # => 11.0 # the error is 11 ulp. (10-f)/(10*Float::EPSILON) # => 8.8 # approximation of the above. "%a" % 10 # => "0x1.4p+3" "%a" % f # => "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
Related: Float#prev_float